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Abstract

FLEXIBLE MANUFACTURING CELL FORMATION USING
GENETIC ALGORITHMS

By
Hanan Ahmed Saleet

Supervisor

Dr. Khaldoun Tahboub

_ " Co- Supervisor
Professor Dz. Ing. Dobrivoje Popovic
Industries are embracing the concepts of agile manufacturing, flexible manufacturing and
group technology, which favor nimble principles over the aging techniques of mass
production. These advanced manufacturing concepts are characterized by their ability to
allow rapid responsc to continuously changing customer requirements. Cellular
manufacturing is the implementation of group technology (GT) to the manufacturing
process. The aim of cellular manufacturing is to decompose the manufacturing process
into a number of machine cells, which are dedicated to the production of corresponding

part families.

This research presents 2 method of using a genetic algorithm(GA) to form machine cells

and part families with minimum intercellular movements ie. minimum number of

exceptional  elements and minimum number of voids. In order to solve the

manufacturing cell formation problem a metalevel genetic algorithm is constructed to
analyze data sets taken from the literature so that Block Diagonal Foﬁns are obtained to
achicve minimum interccllular movements. ‘The GA methodology can find near-optimal
solutions by using the roulette wheel reproduction approach, a combination of crossover

techniques, a combination of mutation techniques, clitism replacement and hybnd

xvil

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



termination strategies. In addition it uses two objective functions. The first is grouping
efficacy, which attempts t'o minimize the number of voids plus the number of
exceptional elements divided by the total operational zone. The operational zone 1s
defined by the number of operations (exceptional elements plus ones along the
diagonals). The other is the Travelling Salesman Problem formulation which attempts to
determine the desirable permutation for rows and columns in a solution matrix by using

a distance ( similarity) measure between a pair of rows (machines ) and columns (parts).

The major contributions of this thesis may be stated as:

1. This cell formation methodology offers improved flexibility since it allows the cell
designer to use the grouping efficacy or the travelling salesman problem formulation
as objective functions and to incorporate design constraints during cell formation.
These capabilities allow altemnative cell configuration to be generated and reviewed
casily.

2. Using metalevel GA where the control parameters ie. population size, target
standard deviation, mutation rate and crossover rates are determined by the first level
GA and used to solve the second level GA, which gives the cell formation problem
solunons.

3. A MATLAB software is constructed to handle the whole process of solving the ccll
formation problem, by controlling and monitoring cach step in generating near-
optimal solutuon.

4. A comparauve study has been conducted between the GA solutions and the
benchmark solutions to the problems adopted from the literature. This comparison is
done using grouping measures such as grouping cfficiency, grouping efficacy and ccll

index. The results obtained are at least equal to any previously reported results.

xXviil
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1- INTRODUCTION



1.1 Introduction

Many firms have adopted Flexible Manufacturing Systems (FM3s) as a meaas to produce
high quality products with small lead times in order to meet the growing requirements of
customized production. The development of FMS is mainly concemned with achieving
productivity in a well-balanced transfer line, while retaining the flexibility of a low
volume job-shop-type conventional manufacturing system. There are a variety of
problems to be addressed for the successful development and implementation of an FMS
(Tiwari and Vidyarthi, 2000). The stepping stone for the implementation of an FMS 1s

considered to be celhilar manufacturing, Cellular manufacturing is an implementation of

group technology (GT) to the manufacturing process.

The primary input data are derived from route sheets. This data is in the form of a zero-
one matrix where the rows represent the machines and the columns represent the parts.
An element a, of the matrix is one if the jth component visits the ith machine for
processing; otherwise it is zero. Algonthms that arm at forming the part families and
machine cells essentially try to rearrange the rows and columns of the matrix to get a
block diagonal form. The ideal situation is one in which all the ones are in the diagonal
blocks and all the zeros are in the off-diagonal blocks. However, the ideal case seldom
occurs in a real shop floor problem. The block diagonal form is usually far from perfect.
This could be either due to the properties of the data or the inadequacies of the

algorithm or both.

A complete block diagonal matrix, in which mutually independent machine-component
groups can be identified, is ideal for the successful development of a cellular
manufacturing system. As the number of parts requiring operations in more than one
machine cell (exceptional parts) increases, the effectivencss of the corresponding cellular

1
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manufacturing system decreases. This is due to intercellular material handling costs
associated with exceptional parts and the necessary adjustments in the cellular

manufacturing system to accommodate the processing of these exceptional parts.

The problem of identifying machine cells and the corresponding part families in cellular
manufacturing has been extensively researched over the last thirty years. However, the
complexity of the problem and the considerable number of issues mvolved in its solution
create the nced for increasingly efficient algorithms. In- this thesis the use of genctic

algorithms for the solution of a simple version of the problem is investigated.

Unlike many other optimization techniques, GA does not make strong assumptions
about the form of the objective function. Most optimization methods maintain a smgle
solution and improve it until an optimal solution is found. GA differs i that it maintains
and manipulates a family, or a population of solutions, in the search for an optimal
solution. GA mimics the evolutionary process by implementing a ‘survival of the fittest’
strategy. In general, the fittest individuals of any population tend to reproduce and pass
their genes to the next generation, thus improving successive generations. However,

some of the worst individuals do, by chance, survive and reproduce (Goldberg,1989).

1.2 Problem Statement and Objectives
As stated eardier, the solution to the cell formation problem is obtained by forming

blocks along the diagonals of a (0,1) incidence matrix shown in Table 1.1. and Table 1.2

Table 1.1: 0,1 incidence matnix
pl p2 p3 p4 ps
mi 1 1 1 0 1
m2 1 0 0 1 0
0 1 0 0 1

m3

3
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Table 1.2: The block diagonalized

incidence matnix

p4 pl p5 p3 p2
m2| 1 1 0 0 0
ml{| 0 1 1 1 1
m3 | 0 0 1 0 1

The cell formation problem can be solved by forming a set of completely autonomous
machine cells that minimizes the intercellular movements, by minimizing the number of
exceptional elements e.g., element (pl, mi) in Table 1.2 and the number of voids e.g,,

element (p3,m3) in Table 1.2.

In this thesis, GA technique is used to solve the cell formation problem. A MATLAB

software is constructed utilizing GA approach to solve the manufacturing cell formation

problem. The software is constructed to be a comprehensive computer package to

handle the whole process by controlling and monitoring each step of generating near-

optimal solutions. The main features of the developed software are: R

1. The use of metalevel GA where the control parameters Le., population size, target
standard deviation, crossover rate and mutation rate are determined by the first level
GA and are used to solve the second level GA, which gives the cell formation
problem solutions.

2. The user is given the option to use the simple GA after specifying the previous
parameters.

3. The user is given the option to switch between two objective functions; Grouping
Efficacy (GEC) or Travelling Salesman Problem formulation (TSP).

4. The specification of the maximum number of cells (k) so that, the solved matrix
may be partitioned into a number of cells less or equal to this number

3
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Data sets taken from the literature which represent the (0, 1) incidence matrices are the
main input to the genetic aigorithm software, which uses roulette wheel selection, 2
combination of crossover techniques, a combination of mutation techniques, elitism
replacement  strategy and hybnd termination criteria. This software contains several

graphical user interfaces (GUI) and several functions.

To increase the flexibility of the proposed algorithm the user s allowed to incorporate or
selectively remove constraints on the number of permissible cells. Unconstrained
solutions containing the naturally occurring clusters can be generated as well as

constrained solutions. By allowing alternative cell configurations evaluation, the power of

the technique as a tool of analysis is extended.

A scparate graphical user interface is constructed to handle the outputs and to display the
results including grouping efficacy, grouping efficiency, TSP results, number of voids,
number of exceptional elements, number of cells and the number of iterations required
to find near optimal solution. Also it displays a plot of the maximum , the average and

the standard deviation of the fitness values varation with the number of generations.

The objectives of the research are as follows:

a. Apply the simple genetic algorithm to solve the manufacturing ccll formation
problem (MCFP), by setting the GA control parameters randomly.

b. Apply a metalevel GA to the MCEFP. The fust level GA optimizes the control
parameters used in the second level GA in 2 trail to find the near optimal solution.

c. Formulation and implementation of genetic algorithm, that can give the near optimal

solutions to the manufacturing cell formation problem, allowing the cell designer to
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use varous objective functions and incorporate design constraints during cell
formation.

d. Constructing a comprehensive user-interface software to handle the whole
evolutionary process, by controlling and monitoring each step of generating near-
optimal solution.

e. Comparing the GA results with the benchmark solutions to the problems adopted

from the literature.

1.3 Organization of the Thesis

The thesis is organized as follows:

Chapter one is an introduction, it contains a general introduction about manufacturing
cell formation problem (MCEP), genetic algorithms, and the application of GA to solve

the MCFP, and the problem statement and objectives.

Chapter two provides background and literature survey. It contains an introduction to
the manufacturing cell formation and its importance in the group technology. Genetic
algorithm and its implementation to cell formation are discussed. This chapter gives an
overview of genetic algorithms, te., GA basic theory, GA concept, definitions,
advantages, and the differences from traditional methods. It also shows the similarity
templates (schemata) and the GA mathematical foundations. In addition it describes GA

approach and methodology.

Chapter three represents the core of the thesis since it provides a complete description of
the problem formulation and solution methodology for manufacturing cell formation
using genetic algorithms. The manual formulation of the computer implementation 18
described here. Finally, it presents the methodology of the metalevel GA.

5
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Chapter four gives an intréduction to MATLAB, the computer language used in this
thesis to build 2 software with flexible characteristics. Also it presents a comparison of
the results of applying the simple genetic algorithm and the metalevel GA. Constraining
the number of cells and the different measures for the goodness of grouping are

discussed in this chapter. Finally, a comparison with the literature is presented.

Chapter five contains summary, conclusions and recommendations.
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2- BACKGROUND AND
LITERATURE SURVEY



2.1 Introduction

Group Technology (GT) h;lS been recognized as an important disciplined approach to
low volume/high-variety and mid-variety manufacturing, which included 50-75% of
manufactured parts and is likely to increase. Cellular manufacturing, based on the
philosophy of GT, is intended to make small-to medium-sized batches of a large variety
of part types produced in the flow shop manner. One of the most important problems in
designing a cellular manufacturing system is the formation of machine cells and the

grouping of part families (Chunwei and Zhiming, 2000).

Machine-cell formation algorithms try to block-diagonalize the machine-part incidence
matrix into a block diagonal form in which all ‘1’ entries are located in the diagonal

blocks and all the ‘0’ entries are located in the off diagonal blocks in an ideal case.

In general, most cell formation techniques work well for small, well-defined problems.
Although some methods offer generally superior results, no single technique has been
shown to provide the best solution for a broad range of applications. Some techniques
do not offer ccll designers the flexibility to change objective functions and selecuvely
include constraints. In addition, several meaningful evaluation criteria have been
proposed that cannot explicitly be used as an objective function in many clustering
algorithms. Finally, some clustering algorithms cannot identify all naturally occurring

clusters and find solutions with a constrained number of clusters (Jeffrey ef al, 1990).
T

Cell formation approaches in the literature have covered a wide spectrum of techniques.
Arrav-based clustering methods perform a series of column and row manipulations to

form part familics and machine cells simultancously. The Bond Encrgy Algorithm and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



the Rank Order Clustering Algorithm are two of the oldest and commonly array-based

methods.

Graph-based methods employ a graph or network representation of the cell formation
problem and use partidoning techniques, such as the Modified Hamiltanian Chain

(MHC) to create manufacturing cells.

Neural networks techniques were also used to identify machine cells and part families.
The networks range from simple nets to greatly modified nets such as Ortho-Synapse

Hopfield Network (OSHN) which solves large incidence matrices in a very short time.

Also, the genetic algorithms are used to solve the cell formation problem which uses
different objective functons, such as minimizing the intercellular movements,
minimizing costs due to intercell and intracell part movements and minimizing the total
within cell load varation. In addition, genetic programming which evolve varniable-length
strings in the form of computer programs, is used to give solutions to the cell formation

problem.

To meet the need for a flexible, efficient, and cffective clustering technique, we have
developed a cell formation method that uses genctic algorithm. GA can find solutions to
lincar and nonlincar problems by simultancously exploring multiple regions of the state
space and exponentially exploiting promising areas through mutation, crossover and
sclection opcrations. Genetic algorithms have proved to be an effective and flexible

optimization tool that can find optimal or near-optimal solutions.
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Some difficulties can be faced when solving the cell formation problem, such as:

1. Achieving the data sets to .verify the proposed algorithm

2. GA manipulation and formulation.

3. GA parameters optimization.

4. Converging to the optimal solution.

5. Building a flexible and a comprehensive simulator to handle all the previous

problems.

'The manipulation and formulation of the GA program required a great effort. But the
final results were very efficient, especially, the achievement of optimized GA parameters,

which give better solutions to the ccll formation problem.

Genetic algorithms are significantly different from alternative search stratcgies. The
benefits of using GA to solve the cell formation problem are summarize as follows
(Goldberge, 1989):

1. The mechanics of GA are surprisingly simple, involving nothing more than copying
strings (solutions) and swapping partial strings.

2. Rather than using the parameters themselves, GA uses a coding of the parameters.
From an artificial intelligence perspective, a GA is subsymbolic, representing and
applying knowledge without symbol manipulation.

3. GA search from a population of points rather than from a single point. GA arrives at
a result by improving on the best solutions over a number of generations, so GA will
reduce the computer processing time.

4. 'T'hey use payoff information, not derivatives or other auxiliary knowledge. GA can
be successful even when response surfaces are multi-objective, discontinuous and

non- differentiable.
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5. Genetic algorithms make use of probabilistic rather than deterministic transition
rules, random choice ié used to explore regions of the search space that are likely to
contain improvements.

6. GA is a robust and flexible optimization technique, so further modifications to the
existing solution can be done easily. GA parameters affect the optimality of the final

solution and the CPU time.

The cell formation problem, the genetic algorithms and the literature survey are discussed
in the following sections. For the knowledgeable reader, not going through the following

sections will not affect the other chapters.

2.2 Cellular Manufacturing

Cellular manufacturing is the implementation of group technology (G1) to the
manufacturing  process. G'T' was originally introduced by a Russian engineer, S. P.
Mitrovanov in 1958 (Vajpayee, 1995) and was popularized in the west by Burbidge in
1975. The basic idea of group technology (GT) is to decompose a manufacturing system
into subsystém. It states that sigmficant advantages can be achieved by grouping
company eclements that are bound by some form of similarity. These elements range
from entire departmental units to simple machines or parts. On the plant level the aim of
GT 1s to decompose the manufacturing process into a number of machine cells which
are dedicated to the production of corresponding part families. This configuration is
* rraditionally  known as cellular manufacturing. ‘The intuition behind ccllular
manufactuning 1s an attempt to achieve the mass-production effect of flow-line
production in batch manufacturing. ‘The implementation of cellular manufacturing has

been reported to result in significant benefits for the manufacturing procedure.
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Some of these benefits are (Dimopoulos and Mort, 2001):
- Reduced set up times ; |

- Reduced work-in-progress inventory ;

- Reduced throughput times;

- Reduced maternial handling costs;

- Simplified scheduling;

- Simplified flow of products;

- Improved quality.

2.2.1 The manufacturing cell formation problem
the MCFP can be constdered as multi-criteria deciston-making problem. Objectives such
as minimization of costs of intercellular movements, space usage, part subcontracting,
machine loading and operation costs, or the minimization of the amount of intercellular
movements, part dissimilarities and machine duplications can be formulated to solve the
MCFP (Mansouri et al., 2000). Most rescarchers when dealing with cell formation they
assume an infinite loading capacity. But from practical point of view 1t is important to
incorporate machine loading into the model. Also, To achieve higher level of production
flexibility, it becomes necessary to consider alternative process plans for cach part.
Although these objectives consider many manufacturing factors, they are often difficult
to formulate for practitioners. So the simple binary version of the cell-formation problem
15 considered in this thesis where the objective 1s to minimize the intercellular
movements may provide rough cixt design. Tt is usually llustrated with the help of the
machinc-component mcidence matnx A [m x n} where:

m is the total number of machines in the plant,

n 1s the total number of parts in the plant.

11

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Each posttion in the matrix can assume two values, ‘0’ and ‘1°. A positive entry indicates
that the part of the corresponding column has an operation on the machine of the
corresponding row. A 0’ entry indicates the opposite. The information provided by the
incidence matnix 1s illustrated with a simple case of a plant that produces five parts using
three machines. By analyzing information from the route cards of parts, the incidence
matrix of Table 2.1 is obtained. The value of a,, is equal to ‘1’ thus part 4 needs an
operatton on machine 2. In contrast, part 4 does not need an operation on machine 1
since a, ,1s equal to ‘0’.

Table 2.1: 0,1 incidence matrix

pl _p2 p3 p4 p5
ml|] 6 1 1 0 1
m2| 1 0o o 1 0
m3|{ 0 1 1 0 1

Once the incidence matrix has been obtained, the cell-formation problem is transformed
to the problem of finding a configuration with all positive entries arranged inside blocks
along the main diagonal of the incidence matnix. A diagonalized matrix allows the casy
identification of machine cells and corresponding part families. Table 2.2 illustrates the
diagonalized version of the example matrix, which results from rearranging its rows and
columns.

Table 2.2: The block diagonalized

incidence matnx

p4_pl_ p5 p3 _ p2
m2] 1 1 0 0 0
ml| 0 0O | 1 1 1
m3{ 0 0 |1 1 1

By observing the matnix 1t 1s ecasy to identify two independent cclls, the first one
compnsing of machine 2 and parts 1 and 4, and the second one comprising of machines
1 and 3 and parts 2, 3 and 5. The main objective of a cell-formation algonthm in the

simple version of the problem  1s the construction of completely independent cells, e,
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cells where all parts included in a part family are solely processed within the
corresponding machine cell. However, this is a case rarcly encountered in practice. Table

2.3 illustrates a situation where the cells that have been formed are not independent.

Table 2.3: The incidence matrix
with intercell moves.
pt4 pl pb> p3 p2
m2 | 1 1 0 0 0
mil 0 1 1 1 1
m3 | 0 0 1 0 1

The reason for this inefficiency is part 1, which requires an operation on a machine that
belongs to a different cell {machine 1). It is customary in cellular manufacturing
terminology to describe part 1 as an exceptional part or overlapping part and machine 1
as a bottleneck machine. When completely independent cells cannot be formed, the
objective usually becomes the minimization of intercell moves or the minimization of

matenal handling costs in general.

So, exceptional elements are machines or parts which do not permut the arrangement of
the incidence matrix in a stnctly block diagonal form. In other words, they cause
machines to be shared by different families of parts. Element a,, in Table 2.3 15 called a
void (zero inside the cell) indicates that a machine assigned to a cell 1s not required for
the processing of a part in the cell. The implications of voids and exceptions are as
follows:
1. Control and co-ordinate efforts. Cell formation aims to achieve small independent
cells. Small cells arc easy to control. When the cells are not independent co-ordination

1s required for processing part operation i different cells.
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2. Intracell and intercell material handling. ‘The presence of voids may cause increase 1n
intracell handling and decrease the machines utilization, and the presence of

exceptions will lead to intercell handling.

2.3 Genetic Algorithm
2.3.1 Genetic algorithm definitions
John Holland introduced GA in 1975. It has been applied to a number of fields hike
mathematics, engineering, biology etc.
Genetic Algorithm can be defined as follows:

o genetic algorithm: is scarch algorithm based on the mechanics of natural selection
and natural genetics. It combines survival of the fittest among string structures with a
structured yet randomized information exchange to form a search algorithm with
some of the innovative flair of human search (Goldberg, 1989).

e genetic algorithms: is stochastic technique for solving combinatorial optimization
problems, it finds solutions to linear and non-linear problems by simultaneously
exploring multiple regions of the state space and exponentially exploiung promising

areas through mutation, crossover, an selection operations.

2.3.2 Genetic algorithm versus traditional methods

In order for the genetic algorithm to surpass its more traditional cousins in the quest
for robustness, GA must differ in some very fundamental ways. Genetic algorithm is
different from more normal optimization and search procedures in many ways:

1. GA works with a coding of the parameter set not the paramcters themselves.

2. GA scarches from a populaton of points, not a single point. GA operates on

several solutions  simultancously, gathering information from current search
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points to direct subsequent search. The ability to maintain multiple soluttons
concurrently makes GA léss susceptible to the problems of local optima.

3. GA uses payoff (objective function) information, not derivatives or other
auxiliary knowledge.

4. GA uses probabilistic transition rules, not deterministic rules. GA is randomized
alporithm, in that it uses operators whose results are governed by probability.
These results for such operations are based on the value of 2 random number.

5. GA optimizes the trade-off between exploring new points in the search space and
exploiting the information discovered thus far. |

6. GA has the property of implicit parallelism. Implicit parallelism means that the GA’s
effect 1s equivalent to an extensive search of hyperplanes of the given space, without

directly testing all hyperplane values.

2.3.3 Advantages of genetic algorithm

The advantages of using genetic research and optimization are summarized as follows

(Goldberg, 1989):

1. The GA 1s computationally simple yet powerful in its search for improvement.
Furthermore it 1s not limuted by restrictive assumptions about the search space such
as: assumptions concerning continuity, existence of derivatives and other matters.

2. The search 1s conducted from a population of points rather than a single point, thus
increasing the exploratory capability of GA.

3. GA is theoretically and empirically proven to provide robust search in complex
spaces. If artificial systems can be made more robust, costly redesign can be reduced

or eltminated.

15
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4. GA works with a direct coding of the parameter set rather than the parameters

themselves so, it 1s sutable for discontinuous, high dimensional, and multi-modal

problems.

5. GA 15 example on search procedures that use randorr.l.l choice (probabilistic transition
rules) as a tool to guide a highly exploitative search through a coding of a parameter
space.

6. GA has no need for any auxiliary information: GA 1s blind. To perform an effective
scarch for better structures it only need payoff values (objective function values)
associated with individual strings (solutions).

7. GA lends itself naturally to implementation in parallel processing environment
leading to the ability to exploit newer technologies in this domain, so faster
computational times. GA 15 now finding more widespread application mn business,
scientific and engineering,.

8. GA has certain input parameters, which can be vaned to improve on poor
performance such as initial population size, number of reproductions per generation,

mutation rate etc.

2.3.4 GA concept and methodology

Genetic algorithms  belong to the family of evolutionary algorithms, a rescarch field that
has expanded rapidly over the last ten years. Evolutionary computation employs the
concept of Darwintan strife for survival to guide the search for a potential solution. The
probabilistc nature of evolutionary algorithms and their ability to search in parallel
through the solutions’ space means that they are less likely to be trapped in local optima.

The simple GA 1s composed of three operators: reproduction, crossover and mutation.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Reproduction is a process in which individual strings are copied according to their
objective function values. Copying strings according to their fitness values means that
stings with a higher value have a higher probability of contributing one or more

offspring (child) in the next generation.

After reproduction, the selected (copied) strings enter into a ‘mating pool’, a term given
to the place where the selected strings are stored before the crossover operator is applied.
Each string in the mating pool randomly selects its partner to participate in crossover.

The exact locations of the crossovers are determined randomly.

Reproduction and crossover are usually far more important to the GA than mutation.
Mutation can protect agamst losses that could be 1rrevocable by randomly changing the
value of a string position. It can also cause local or global movement in the search space
in effect, giving the search a new place to explore. Mutation probabilities are usually set

very low. Mutation operator is a random alteration of a string, such as switching a bit.

2.3.4.1 Similarity templates

Samhouti, 2000). It (s recognized that if the strings are considered separately, then few
(Samhoun, :

X f information will be available, however, when the strnings, their fitness values,
pieces o

d the similasitics @ ong the strings in the population are considered, a wealth of new
an e 5

1 1 : irect the scarch 1s admitted. A binary schemata consist of three
information to help d \

1 where * 18 2 do not care symbol, so 1t can take a value of 0 or 1.
alphabets: {*, 0, 11 where *18 y \
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In general, a particular string contains 2" schemata, where L is the string length. As a
result, 2 population of size n contains somewhere between 2% and (n.2Y) schemata
depending upon the population diversity. The original motivation for considering

important similarities was to get more information to help guide the search.

The effect of reproduction on a particular schema is easy to determine, since most fit
strings, have higher probabilities of selection. Hence, reproduction will not sample new
points in the space. Crossover leaves a schema unchanged if it does not cut the schema,
but it disrupt a schema when it does. Mutation at normal low rates does not disrupt a

particular schema very frequently.

2.3.4.2 GA mathematical foundation

The following mathematical foundation can be found in details in Goldberg (1989):

The order of ascheme H, denoted by o(H), is simply the number of fixed position (in a
binary alphabet, the number of 1’s and 0’s) present in the template. The defining length
of a schema H, denoted by 8(H), is the distance between the first and last specific string

position.

Suppose at a given time step there are m examples of a particular schema I contained
within the population A(t) where we write m = m (#,t). During reproduction, a string is
copied according to its fitness, or more precisely a string A, gets selected with probability
p; = f/Zf . After picking a population of size n from the population A(t), we expect to
have m (H,t+1) representatives of the schema I in the population at ime t+1 as given
by the equation m(Ht+1)= m(ILY).n.fI)/Zf, where £11) is the average fimness of the

strings representing schema I at time t. If the average fitness of the entire population is
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written as f = 2f /n , then the reproductive schema growth equation is rewrite as

follows:

m(H, ) =m(H, t +1). f(?) ........................................ 2.1)

In words, a particular schema grows as the ratio of the average fitness of the schema to

the average fitness of the population.

Suppose that a particular schema H remains above average an amount cf with ca

constant. Equation (1) can be written as follows:

m(H,t + 1) = m(H, t)@ = (1 + C)m(H,t) ..................................... (22)

starting at t = 0 and assuming a stationary value of ¢, equation(2) will be as follows:

ML) = m 04 e (23)

A lower bound on crossover survival probability Ps can be calculated for any schema.
Because a schema survives when the cross site falls outside the defining length, the
survival probability under simple crossover is P=1-8(1 D/@-1). If crossover itselfis
performed by random choice, say with probability Pc at a particular mating, the survival

probability may be given by the expression:

Ps= [l - (Pc -i(_iz)] ..................................... (24)

‘The combined effect of production and crossover may now be considered. ‘The number

of a particular schema I expected in the next gencration s as follows:
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m(H, t+1) 2m(H, {).—=—2 (H) ..................................... @.5)

m(H,t+1)= m(H, ). i(.l.{_)_{ _[p S(H)H ..................................... (2.6)
f L-1

With reproduction and crossover, schema H grows or decays depending upon a
multiplication factor. With both crossover and reproduction, that factor depends on two
things: whether the schema is above or below the population average and whether the
schema has relatively short or long defining length. Clearly, those schemata with both
above-average observed performance and short defining lengths are going to be sampled

at increasing rates.

Mutation is the random alteration of .a single position with probability Pm. In order for a
schema H to survive, all of the specified positions must themselves survive. Therefore,
since a single bit survives with probability (1-Pm), and since each of the mutations is
staustically independent, a particular schema survives when each of the o(H) fixed
positions within the schema survives. Multiplying the survival probability (1-Pm) by itself
o(H) times, we obtain the probability of surviving mutation, (1-Pm)°™ | For small values
of Pm (Pm<<1), the schema survival probability may be approximated by the expression
1-o(H).Pm. So, a particular schema H recetves an expected number of copies in the next
generation under reproduction, crossover, and mutation as given by the following

equation (ignornng small cross-product terms):

m(H, t+1) > m(HL, ). (f){ ( B(H)J O(H)Pm ] ............................... @

This cquation indicates that: short, low-order, above-average schemata receive

exponentially increasing trials in subsequent generations. This conclusion is so important

20
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that it has the special name of Schema Theorem, or the Fundamental Theorem of

Genetic Algorithms.

2.3.5 Genetic algorithms approach

The GA search is conducted from a population of solutions, each solution or individual
in the population is described by a vector of variables (chromosome representation).

The first step in the GA procedure is to initialize the population either randomly or by
seeding. Once the initial population is generated, each individual i, 1s evaluated by using
the objective- function to determine its fitness or value, f. A subset of the population 1s
selected to parent the next generation, where the selection mechanism takes note of
diversity among individuals as well as of individual performance (Wenston, 1993). An
individual in the population can be selected to be a parent more than once. A
probabilistic selection is performed such that the fittest individuals have an increased

chance of being selected.

These parents then undergo reproduction using genetic operators to produce a new
population. To complete the new population, a subset of the old population is added to
the new population. For example, the elitist model ensures that t:he best individual of one
generation is included in the next. The GA moves from generation to generation until

some specified stopping condition 15 met.

In building genetic algorithm, seven fundamental 1ssues that affect the performance of
the GA must be addressed: chromosome representation, initialization of the population,
selection  strategy, crossover and mutation, termination criteria, and evaluation measurcs.

This is an introduction to these ssucs of the GA.

21
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a. chromosome representation:

Choosing an approprate réprescntation is the first step in applying the GA to any
optimization problem (Grefenstte et al. 1985). Each individual or chromosome is made
up of a sequence of genes from a certain alphabet. The alphabet can be a set of binary
numbers, real numbers, integers, symbols (i.e., A, B, C, D), or matrices. For example, in
a binary representation, individuals are represented by a collection of attributes or
vartables that are represented by a single binary string as follows:

Individual 001001

b, initialization:
Researchers use either heuristic or random techniques to generate feasible strings that

form the initial population.

c. selection (reproduction):

Several types of reproduction (selection) methods are used to choose the individuals in
the mating pool:

One way of sclection 15 to use the roulette wheel sampling. This method assigns a pic-
shaped slice of roulette to each member corresponding to 1ts degree of fitness (see Figure

2.1), such that highly fit members get bigger slices than less fit ones. Next a random

chrom 4 chrom §

chrom 1

chrom2

Figure 2.1: The roulette wheel
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number is generated between 0 and the total fimess of the individuals. The winner is the
one who’s the roulette spinner ends up in. This method is good for giving higher
probability of surviving to the fittest, but it has some additional computations and

memory space needed.

In the ranking method, the roulette wheel selects two individuals with all members
having the same weight, then the higher one in term of fitness is chosen to be included 1n
the pool of alteration. This method may need less computations and memory space but
still has a disadvantages of equaling the opportunities between highly fit and less fit ones
is noticeable. Another way of selection 1s the Tourmnament Sampling. This method’s
principle i1s to choose a set of sequential individuals in a random place, and then the
number with the highest fitness function is added to the mating list. This may be the
simplest method of the selection methods that emphasize on the fitness in a simple

manincr.

d. crossover operator:

The widely crossover techniques used are:

1. Single point crossover: two selected strings are split at the same position, the front
ends of both strings are recombined with the back ends of the other to generate two
children of the next generation.

Parent1: 011001
,Parent2:010011
Child1 : 011011
Child2 :010001
2. Uniform crossover: A mask is used to determine which parent propagates the bit at a

particular position on its string to the same position on the string of onc of the

children, the other c¢hild mnherits the bit of the other parent.
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Parent1: 011001
Parent2:01001 1
Mask :001100
Child 1: 010001
Child 2:011011
e. mutation operator:
The widely mutation techmiques used are:
1. The uniform mutation operator randomly selects one of the varables, vi, from a
parent and sets it equal to a random number uniformly distributed between the
variable’s lower and upper bounds.

2. The boundary mutation operator randomly selects one of the variables from a

parent and randomly sets 1t equal to its lower or upper bound.

f. evaluation function:

A value for fitness s assigned to each solution (chromosome) depending on how it 1s
close to solving the problem. These “solutions” are not to be confused with “answers” to
the problem, think of them as possible charactenstic that are employed mn order to reach

the answer.

g. termination:

The termination crteria may be a pre-specified maxtmum number of generations, or
hybrid termination critenia where a target standard deviation value among the evaluation
measures can be established on the basis of some arbitranily ‘acceptable’ threshold. So, if

the target value is reached stop, else continue till the maximum number of generations.
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2.4 Literature Survey and Future Trends
2.4.1 Coarse-grained classification of grouping methods
There is no standard way of classifying cell-formation methods. A course-grained

classification would result in the following three categories:

2.4.1.1 Visual Inspection

Visual Inspection or simply ‘eye-balling’ relies on the visual identification of machine

cells and part families. Considerable experience is required in the process of identification
- -

even in small problem cases. However, as the size of the problem increases the task

becomes almost impossible. Design drawings, process planning sheets or actual parts are

used to identify a family of parts and the corresponding groups of machines.

2.4.1.2 Coding and_Classification

In Coding and Classification approach, parts are coded by their manufacturing features,

so parts having a similar feature code possess similar numbers, letters, etc. The three

basic part features that can be classified and coded are:

1. shape or geometry of part,

2. function of part, and

3. manufacturing operations and tooling,
However, the information that can i)c incorporated into the part codes is not limited to
these basic part fcatures, e.g. production planning data can be added to the code
systems. Unfortunately, genetic classification and coding system are hard to develop and

expensive to maintam.
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2.4.1.3 Production Flow Analysis

Production Flow Analysisl (PFA) is a method of part-machine grouping which was
developed by Burbidge i 1963 (Cesar and Ramachandran, 1994). PFA 1s particularly
appealing since it does not require a complex part-coding system, it is relatively simple
to implement, and can be applied to the organization of the existing production systems
as well as to the design of new production systems. The method involves the followng
stages:

1. In the first stage, machines are classified by numbers according to type of operation
that can be performed on them. Machines which can perform similar operations are
usually classified with the same type number.

2. In the second stage, the parts list and the information in the production route card
are carefully checked to identify and ensure correctness of the essential information
for analysis. The essential information for each part consist of the operation to be
petformed on it and the machines necessary to perform each operation.

3. The third stage, factory flow analysts (IFFA), involves macro examination of the part
flow through the machines, this allows the problem to be decomposed into major
machine-part groups. These three stagés are merely the necesrsary preliminaries to
provide the required data for the ultimate purpose of the analysis to determine
appropriate machine-part subgrouping for cellular layout.

4. The last stage, involving the problem of identification of machine cell-part family, is
the most difficult part of PFA. The difficulty comes from the amount of information
that must be processed accurately to facilitate the formation of manufacturing cells
that are dedicated to specific part-family production. The Genetic algorithm
methodology presented in this thesis belongs to the family of production-based

methods,
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2.4.2 Fine-grained classification of grouping methods

A fine-grained cIassiﬁcatioﬁ of production-based methodologies for the solution of
binary cell formation problems results in the following categorics:

2.4.2.1 Array Based methods

The Array Based clustering methods perform a series of column and row manipulations
to form part families and machine cells simultaneously. The Bond Energy Algorithm
and the Rank Order Clustering Algorithm are two of the oldest and commonly array-
based methods. In general Array Based techniques operate only on the part/machine
incidence matrix and mcorporate no other manufacturing information, such as limits on
the size of each cell, machining times, etc. These methods require visual inspection of
the solution to determine part families and machine cells and are affected by exceptional

elements and bottleneck machines.

2.4.2.2 Hierarchical Clustering methods

Hierarchical Clustering methods can be divided into two sub-categories: divisive and
agglomerative. Divisive algonthms start with all the machines (or parts) in a single
group and then iteratively generate partitions untl each machine s mn a singleton
cluster. Agglomerative algonithms start with each machine as an initial cluster and then
proceed to merge groups into successively larger parttions unul a single cluster contains
the whole set. The similarity mdex used as the bases in the formation of groups by
hierarchical clustering methods offers distinct advantage over array-based methods. Tt
allows information, such as annual part demands, to be included in the clustering logic
along with the routing sequences. These methods present the designer with a hierarchy
of solutions from which the best alternative is chosen. However, these methods do not
form the cclls and families stmultancously, so additional methods must be employed to

complete the design of the system. A dendrogram s typically used to represent the
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solution hierarchy, making the choice of the correct solution difficult for large

problems.

2.4.2.3 Graph Based approaches

Graph Based methods employ a graph or network representation of the cell formation
probleﬁ and use partittoning techniques to create manufacturing cell. Mukhopadhyay et
al. (2000) proposed an algonthm based on the Modified Hamiltonian Chain (MHC) and
consists of two stages. Stage I forms the graph from the machine part inctdence matrix.
Stage II generates a Modified Hamiltonian Chain which is a subgraph of the main graph
developed in Stage I, and it gives both the machine sequence and part sequence directly.
In this proposed MHC method, the number of parts the machine pair 1’ and §’ requires
is used as the measure of strength. Dummy edges are considered in MHC for better
accessibility in order to arrive at a block diagonal solution to the problem. This is a
presentation of an approach by designing a MHC in the graph theoretic method to solve

the group technology configuration problem.

2.4.2.4 Mathematical Programming methods

Clustering techniques are optimization and mathematical progfamming methods which
offer scveral distinct advantages. These methods have the capability of constraining the
stze of each ccll, the number of cells, as well as the ability to incorporate the use of
different process plans for cach of the parts. These formulations suffer from three critical
limitations. First, because of the resulting nonlinear form of the objective function, most
approaches do not concurrently group machines into cells and parts into families.
Secondly, the number of machine cells must be specified in advance, which affects the

groupmg process and potentially obscures natural ccll formation in the data. Thirdly
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because the varables are constrained to mteger values, most of these methods are

computationally complex for large problems.

Mukattash (1997)  denved a modified approach for solving the p-median model
developed by Kusiak (1990), one of the most popular models which minimizes the total
sum of distances between each pair of parts (machines). He developed a general
algorithm with bounded and unbounded cell size, and based on this algorithm he

developed heunstic algonithms to incorporate alternative process planes.

2.4.2.5 Artificial Intelligence techniques

Artificial Intelligence techniques were found to solve linear or non-linear problems. A
very complicated non-linear problem can be easily solved or converged to the optimal or
near-optimal solution in a very short time compared to other techniques, which are
limited to a certain level of complexity and non-lineanty. Artificial Intelligence (AI)
techniques such as neural networks, fuzzy logic, and genetic algonthms, were used and
tested m cell formation area. All of them have achieved satisfactory results.
h42413

A new structure of the Hopfield neural network, Ortho-Synapse Hopfield Network
(OSHN), was designed by Zolfaghari ‘:md Liangbeen (1997), for solving machine
grouping problems. The OSHN, in conjunction with an objective-guided search scheme,
has been implemented in an algonthm. The main advantages of the proposed approach
lies in that it does not require the training process and can effectively handle the
boulencck machine problem. ‘the proposed approach 1s computationally efficient,
insensitive to the inital network state, and able to escape local opumum solutions

through the global optimum solution may not be guaranteed.
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Malave and Ramachandran (1994) used neural networks based on a simple learning
algonithm  to form machinc/ part cells/families. From the part machine incidence matrix,
a set of binary vectors can be identified in which each vector represents a particular part.
These vectors are called characteristic vectors, since they characterize parts. This set of
vectors form the training set for the neural network. At steady state, each of these
characteristic vectors is associated with a particular output layer neuron. The group of
vectors which are associated with a particular output layer neuron form a part family.
Machine cells are formed by assigning the machines among the various part group
formed. The assignment of machine cells can be done by observing the steady state
weight matrix, because the steady state weights of the neural network contain

mformation on how the machines are distributed among the various part group formed.

Jomnes et al. (1996) presented an integer program that is solved using a genetic algorithm
to assist m the design of cellular manufacturing systems. The objective function was to
minimize intercellular movements of parts. He used a combination of six crossover
operators and four mutation operators. His approach offers improved design flexibility
by allowing a variety of evaluation functions to be employed and by incorporating design

constraints during cell formation.

Zhao ct al. (1995) presented a genetic algorithm for fuzzy clustering. Fuzzy clustering is
one approach for a more accurate presentation of clustering problems based on
uncertain or inexact real-data structures. The ordinary crisp clustening methods restrict
that each point of the data set belongs to exactly one cluster, however there may exist
pomnts whose lincage are much less evident, here, the fuzzy sct theory provides a means
for a more accurate presentation of uncertain or inexact information. The fuzzy rules are

learned  and used to control vanous parameters based on the relative performance of the
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best, worst and mean of the current population such as mutation rate which is altered

continuously in order to explore more and more hyperplanes.

Cheng et al. (1998) suggested that the cellular manufacturing formation problem may be
formulated as a Travelling Salesman Problem (TSP). So, the problem will be solved if the
assoctated TSP is solved. Cities in TSP corresponds to machines or parts. A solution
methodology based on genetic algorithms is proposed to solve the TSP-cell formation
problem. The objective function was to minimize intercellular movements of parts. He
used path representation, edge recombination crossover operator, no mutation, fitness

ranking reproduction and elitism replacement approach to solve the GA.

Dimopoulos and Mort (2001} proposed a genetic programming method which is similar
to any other evolutionary computation method in the sense that the Darwinian principle
of strife for survival is employed during the search for an optimal solution. However,
while most evolutionary algonthms evolve fixed-length strings of binary, integer or real
numbers, genetic programming evolves solutions in the form of computer programs of
variable length. They used a Hierarchical Clustering methodology based on genetic
programming' for the solution of simple cell-formation probferns. Their methodology
comprised of two matn stages. First, a similanity cocfficient was calculated for each pair
of machines that werc available in the plant. The value of the coefficient represented the
similanty of the machines in terms of the common operations performed. Then a
dendrogram that linked individual machines or group of machines according to the
values of their similanty coefficients is generated. The main disadvantage is its

computational complexity in relation to other cell-formation methodologics.
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In this thesis, the genetic algonthm methodology is used to find near-optimal solutions
to the cell formation problem using the roulette wheel reproduction approach, a
combination of crossover techniques, a combination of mutation techniques, elitism
replacement and hybrid termination strategy. In addition it uses two objective functions.
The first 1s grouping efficacy, which attempts to minimize the number of voids plus the
number of exceptional elements divided by the total operational zone. The operational
zone is defined by the number of operations (exceptional elements plus all ones along
the diagonals). The other is the Travelling Salesman Problem formulation which attempts
to determine the desirable permutation for rows and columns in a solution matrix by
using a distance (similarity) measures between a pair of rows (machines) and columns
(parts). A metalevel genetic algonthm is used to optimize the control parameters t.e.

population size, target standard deviation, crossover rate and mutation rate.

2.5 Future Trends

The future trends are going toward constructing hybnd artificial intelligence systems,
which include two Al techniques. For example, neural networks learn using genetic
algonithms. This means that the weights and biases of all the ncurons are joined to create
a sigle vector. A certain set of vectors is a correct solution to the problem at hand. So,
the evolutionary algonthm is used to find one of these vectors. It may be necessary to
develop  a “hybnd” system, which combines several types of intelligence to solve the cell

formation problem.

Another active area in the cell formation problem is to include multi-objective evaluation
function, such as process plans, scheduling constraints, volume of production,

sequencing, ctc. The mclusion of these additional factors 1n the design of part famulies
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and machine cells is a more realistic approach toward achieving the future benefits of

group technology.

Applying metalevel GA to optimize the genetic algorithm operators 1e. crossover
techniques combination, mutation techniques combination etc. may increase the
possibility to find the optimal solution. Also metalevel GA can be used to optimize the
GA parameters i.e. generation gap (the generation gap controls the percentage of the
population to be replaced during each generation), population size, mutation rate,
crossover rate, etc. This is essential since better solutions to the cell formation problem

using GA are required.

2.6 Summary

This chapter provided definition and description of the cell formation problem. In
addition, an introduction to genetic algorithms, GA definittion, advantages, concepts,
methodology, and mathematical foundation are presented. Also, it provided a literature
survey of the previous work in the manufacturing cell formation problem solution

methodologies and future trends in this field.

In the next chapter, the problem of manufacturing cell formation will be formulated to a

genetic algorithm.
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3.1 Introduction

The formulation and implementation of GA to solve the cell formation problem required
building a2 MATLAB software, which includes several graphical user interfaces (GUIs)
and several functions. To maximize the cell formation flexibility, an implementgtion was
adopted that allows the user to employ various representation schemes, sets of operators,
and evaluation measures. This flexibility is gained through the implementation of the

Genetic Algorithms software using MATLAB.

The GA software was tested on ten data sets from the literature to study its effectiveness
as a clustering tool. In all experiments the GA employed both GEC (grouping efficacy)
and TSP (Travelling Salesman Problem-cell formulation) objective functions and their

initialization, mutation and crossover techniques.

The core of the problem formulation Les in building a genetic algorithm function, which
should perform the GA procedures utilizing the data scts from the literature to generate
an initial population of solutions (chromosomes) randomly. These solutions are then
reproduced in order to find the optimal or near optimal solution. A separate function is
constructed to handle the outputs and to display the results including grouping cfficacy,
grouping efficiency, TSP results, number of voids, number of exceptional elements,
number of cells and the number of iterations required to find near optimal solution. Also
it display a plot of the maximum, the average and the standard deviation of the fitness

values variation with the number of generations.

‘The flow diagram shown in Figure 3.1 represents the main menu of the GA software.
The details about the computer implementation of the genetic algorithm to solve the ccll
formation problem using MATLAB is presented in appendix A.
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The main system functions, which are constructed to handle, analyze and find the
optimal or near optimal soiutions are the following (see Figure 3.2):

1. The initial matrix (data set) functions

2. Genetic algorithm functions

3. Experimental results (GUD

In the following sections these functions are discussed and explamed.

3.2 Initial Matrix (Data Set) Functions
Finding 2 set of problems for the evaluation of an optimization method 1s always a
difficult task. The main requirements that a representative set of test problems
should fulfill are the following:
_ Different instances of the problem should be included in terms of size, difficulty
or any other parameter that can be varied.
- Results from zlternative solution methods should be available, so that meaningful

comparisons can be made.

In the case of cell-formation problems, there 1s no formal definition of the difficulty of 2
particular instance of the problem. The lack of parameter-based estimation of the
difficulty of the problem means that the creation of randomly generated problems is not
as straightforward as in the casc of other optimization problems. In practice, researchers
of the cell-formation problem evaluate their methods on test problems taken from the
literature, so there are many comparative results available. While the second requirement
for an appropriate set of test problems is fulfilled, there should be a careful qualitative
consideration of the cases that will be chosen in order to be as close as possible to the
fulfillment of the first requirement as well. The data sets used to cvaluate this GA
clustering technique are of varying size. In cach case, correct grouping is defined as
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Figure 3.2: The simple GA flow diagram
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being equivalent to the best known configuration provided in the literature, on the basis

of grouping efficacy, grouping efficiency and the cell index.

The inputs to the above algorithms come from company’s technological experience and
knowledge specified in routc-sheets. This knowledge is presented in the literature 1n the
form of a zero-one matrix. Companies usually forbid the release of their products route-
sheet because of competition unless it is an out of date information. This reason
motivated researchers to design and publish theoretical problems similar to real ones in
the form of zero-one matrix in order to study the performance of their algorithms

compared to others.

Ten notable problems have been sclected from the literature (sce Table 3.1) to test the
performance of the algorithm. Alternative solutions can be obtained by using pre-
determined maximum number of cells or leaving the final number of cells unrestricted.

Table 3.1: Benchmark test problems

No | Inadence matnx Reference Size

1 King (1980a) Mukattash (1997) 6x10
2 Chen and Guerrero (1994) Mukattash (1997) 6x15
3 Chu and Hayya (1991) Zhao et al. (1995) 9x9

4 King {1980h) Mukhopadhyav et al. (2000) 10x8
5 Viswanathan (1996) Mukateash (1997) 10x12
G Simple Chan and Milner (1982) Malave and Ramachandran, (1994) | 15x10
7 Complex Chan and Milner (1982) | Malave and Ramachandran, (1994) 15x10
8 Chandrasekharan and Cheng et al. (1998) 8x20

Rajagopalan (1986)

9 King (1980¢) Malave and Ramachandran, (1994) | 14x24
10| Burbidge (1960) Jeffrey et al. (1996) 20x35

3.3 Genetic Algorithm Functions
In order to provide a comprehensive understanding of our algonthm a simple illustrative
example is used throughout. Table 3.2 shows the initial matrix of machines (rows) and

the corresponding parts (columns) processed by these machnes.
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Specifically, for the cell formation problem, an integer alphabet {1, ..., k} is
employed, where k représents an upper bound on the number of part
families/machine cells. For an individual, the first m variables represent the
machines, and the last n variables are associated with the parts. Therefore, each
individual is a vector of m + n integer variables.

Chromosomel =X, X, ... X, Y1 ¥2 -+ Va
In our illustrative example m=3 , n=5 and k=2

Chromosomel =112,21112

Each part and machine variable is equal to the number of its assigned family or cell,
see Table 3.3. In the above example, y,= 1 indicates that part 2 is assigned to part
family 1, while x,= 2 indicates that machine 3 is assigned to machine cell 2. Part

families are assigned to the machine cell with the same number.

Table 3.3: Initialization of GEC objective function.
Chromosome no. Initial population
(randomly selected)
Chromosomel 121,22112
Chromosome2 221,22221
Chromosome3 122,12121
Chromosome4 112,21222
Chromosome5 111,12211
Chromosome6 211,22121
Chromosome7 221,21111
Chromosome8 122,11112
Chromosome9 212,21222
Chromosome10 212,12121

However, the selection of the representation - of the problem requires careful
consideration. Without an appropriate representation, genctic  search can be slow and
produce mediocre results. With  a good representation and appropriate Operators,
convergence to high quality solutions can be fast in highly complex and constrained
Although several genetic representations have been used for the Travelling
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Salesman Problem the permutation representation is both common and simple. In this
representation the chromosome is stored as a list (path) of ordered machines or parts.

. . M
Each gene in a chromosome may correspond to a machine or a part.
For example, chromosomel represents a path of machines, while chromosome2
represents a path of parts. We will take parts for llustration and the same is applicable
for machines.

chromosomel : 312

chromosome2:35421

The initialization function produces randomly a number of individuals equal to the
population size specified by the user, which will be ten for our example. Tables 3.3 and

3.4 show the initial populations of size 10 for both GEC and TSP objective functions.

Table 3.4: Initialization of TSP objective
function.

Chromosome no. Initial population

{(randomly selected)

Chromosomel - 54312
Chromosome2 32145
Chromosome3 54123
Chromosome4 45123
Chromosome5 51234
Chromosome6 12453
Chromosome7 53241
Chromosomce8 35214
Chromosomc?9 41235
Chromosomel( 24351

3.3.2 Evaluation function

Evaluation functions (fitness function) of many forms can be used in a GA, subject to

the minimal requirement that the function can map the population into a partly ordered

set.

14
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Cell formation in a given machine-past incidence matrix involves rearrangement of rows
and columns of the matrix.to create machine cells and part families (.e. blocks). The
major objective is to rcduée intercellular moves among machine cells. In asolution
matrix, 2 block diagonal form (BDF) is often desirable because the blocks may be easily
identified to facilitate the subsequent cell formation decisions. The two objective

functions used in this thesis are discussed bellow.

3.3.2.1 Grouping efficacy

Grouping efficacy is chosen as the initial evaluation measure because it has been used
frequently in the literature and results are available for comparison. It secks to minimize
the number of exceptional clements and the number of voids (zeros) in the diagonal
blocks. Exceptional elements present inter-cell movements of parts, which reduce the
effectiveness of cellular manufacturing. More specifically, grouping efficacy attempts to
minimize the number of voids plus the number of exceptional elements divided by the
total operational zone. The operational zone is defined by the number of operations
(exceptional elements plus all ones along the diagonal blocks). Grouping efficacy has 2
value of one when there are no exceptional elements and no voids and a value of zero if

the number of exceptional clements equals the total number of operations. Formally,

grouping efficacy (T ) is defined as:

I.:l—(o .................. R}
1 - ¢
€, e 32
¢ = —— (3.2)
€
e,
¢:______ .................. (3.3)
€
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where,
¢.: number of 1% outside the machine/part groups (exceptional elements).
e,: : number of O’s within the machine/part groups (voids).

e: total number of operations (ones) in the incidence matrix.

I': grouping cfficacy.

Where @ is the ratio of the number of exceptional elements to the total number of
operations and ¢ is the ratio of the number of voids in the diagonal blocks to the total
number of operations. This expression has the requisite properties like non-negativity
and zero to one range. Moreover, ¢ and ¢ are the only ratios and are not affected by the

size of the matrix.

Properties of the grouping efficacy function:

The grouping efficacy function is basically a ratio of two independent ratios that are

dependent upon the block-diagonalized matrix.

1. The value of GEC varies ranging from ‘0’ to ‘1’. By definition 0< ¢ <1 and
0< ¢ =1 therefore 0 <T = 1.

2. Trom this function, physical significance can be obtained from its different extreme
values. When I'=0, i.e. zero efficacy, @=1 which implies that all the 1’s n the matrix
are outside the diagonal blocks. On the other hand I'=1 implies that ¢ = 0 meaning

a perfect bolck-diagonalization which can be further interpreted as- there are no 1s

outside the diagonal blocks meaning no existence of a bottleneck problem in the

system.
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Fitness function is used to evaluate the value of the individuals within the population.
According to the fitness Vajue scored, individuals are selected as parents to produce
offsprings in the next generation or to disappear in the next generation.

The calculation of the GEC values associated with each chromosome in Table 3.3 18
ilfustrated here:

Table 3.5 shows the intermediate solution for chromosome2:221,22221. Note that
the first cell contains machine 3 and part 5, and cell two contains all the other machines
and parts. The values of e0=2, ev=3 and ¢=8, then I'=(1 -2/8)/(1+3/8)=0.546. Table 3.6

gives all the GEC values associated with the ten chromosomes.

Table 3.5: Intermediate solution

p5 pl p2 p3 pd
m3 | 1 0 1 0 0
ml | 1 1 1 1 0
m24{ 0 1 0 O 1
‘Table 3.6: Evaluation of GEC objective
function.
No. | Initial population f(x) from eq.(3.1)
1 121,22112 0.154
2 221,22221 0.546
3 122,12121 0.500
4 112,21222 0.167
5 111,12211 0.357
6 211,22121 0.250
7 221,21111 0.400
8 122,11112 0.400
9 212,21222 0.308
10 212,12121 0.250

3.3.2.2 Traveling Salesman Problem:

To increase the flexibility of the MATLAB software an alternative objective function is
used which is the TSP formulation, where cities in the ‘TSP corresponds to machines and
parts. In the TSP, the total distance is calculated as the distance traveled from the starting

city to the last city plus the distance from the last city back to the starting city. In the
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TSP-cell formation problem, returning to the starting city (1e. machine or part) does not
have any practical meaning,. As the first and last machines/parts need not be connected,

the total distance of a path instead of a tour is calculated in our fitness function.

The problem of arranging rows and columns is similar to a permutation problem. To
determine the desirable permutation for rows and columns in a solution matrix, a
distance (similarity) measure between a pair of rows (machines) iand jis defined as

follows:

d, = ?;1“* “"fkl SRV (3.4)

Similarly, we use the following distance measure for a pair of parts 1and j:

L]

dy=Y,

k=1

a, -ag_l .................... (3.5)

In this proposed TSP, we used the number of parts (machines) the machines (parts) pair
¢ and § requires as a measure of strength. A small distance value between two machines
implies that both machines process a number of common parts. Should two machines
with a small distance value be placed in different machine cells, parts requiring the two
machines must be transported between machine cells. This will increase material
handling. Therefore, a manufacturing cell formation algorithm must place machines
processing similar parts (and parts requiring similar machines) close to onc another in the
final permutation. This in tum attempts to minimize the total distance between pairs of

machines.

Let p be the permutations of machines and ¢ be the permutations of parts. For a

permutation of machines: 23 1, p(1) is 2, and p(3) is 1. The proposcd approach converts
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the initial permutation of machines (specified by the initial matrix) to a new permutaticn
that minimizes the following fitness function:

m=

1 n
Total distance = Z Z |ap(i)0(k) “Ap(itlo(k)) U
k=1

Where,
m: number of machines.
n: number of parts.
p(i) :the permutation of machines.
o(k): the permutation of parts.

1 if machine p(i)process part o (k)
Aptitetr) = W
0 othewise

By minimizing the total distance, machincs that process similar parts are grouped
together. To diagonalize a matrix, we may rearrange the parts using the proposed

approach:

1 m

Total distance = z |a p (Yo (k) — @p(i)a(k4l)f crrrmmmmree (3.7)

=
]

The greater the number of parts required by that machine pair, the stronger the pair
becomes. This method is considered to be a simple one and proved to be quite cfficient
in arriving at a solution as block diagonal form (BDE). The machine part incidence
matrix only reveals the machines required for each part, it does not reveal any sequence
through which the part has to move. The proposed algosithm also gives the solution i;l
the BDF, considenng the similarity of the machine required, without considenng other

costs involved.
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The TSP will give the desired machine sequence and part sequence directly. If the
machine part incidence matﬁx is drawn with the generated sequences, it gives the
solution in BDF. Weak edges are the edges where partitioning into cells takes place, ie.
the distance measure associated with that partition is a maximum. The strength of this
algorithm is that we do not need to identify the edges where to partition into cells. 1f all
the machines and parts are arranged as appears in the sequences, cells and part families

will automatically show in BDF.

The first step to find the TSP values associated with each chromosome in Table 3.4 1s to
calculate the distance matrix for both machines and parts based on equations 3.4 and 3.5.
The distance matrix for the parts is shown in Table 3.7. The fitness value of
chromosome 8 : 352 1 4 s calculated as follows :

Total distance=1+0+2+1 =4,

Table 3.7: Distance matrix for parts.

Parts
1 2 3 4 5.
110 2 1 1 2
. 212 0. 1 3 0
T3l1 1 o 2 1
™ o4 1 3 2 0 3
512 0 1 3 0

The week edge in this sum is the maximum distance measure i.¢. 2. "T'his will partition the
permutation to two families. Iamily one contains parts 5,3, 2 and the other contains 1
and 4. If the machines sequence is calculated to be 3 1 2, and the matrix is rearranged in
these two sequences the intermediate solution will be as in Table 3.8, note that this 1s the
optimal solution. Table 3.9 shows the TSP valucs for the ten chromosomes.

Table 3.8: Intermediate solution

p3 _p> p2 pt p4
m3 1 0 1 0 0
ml i 1 1 1 1 0
m2 0 0 O 1 1
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Table 3.9: Evaluation of TSP objective
function.
No. | Initial f(x) valve from | g(x)=
population eq.(3.7) 1/{(x)
1 54312 8 0.125
2 32145 7 0.143
3 54123 7 0.143
4 45123 8 0.125
5 51234 7 0.143
6 12453 9 0.111
7 53241 6 0.167
8 35214 4 0.250
9 41235 5 0.200
10 24351 8 0.125

3.3.3 Reproduction (Parent selection technique)

Reproduction is a process in which individual strings are copied according to their
objective function values, ie., fitness values. Copying strings according to their fitness
values means that strings with a higher value have a higher probability of contributing
one or more offspring in the next generation. This operator is an artificial version of
natural selection. The reproduction operator receives the matrix of the generated

solutions. Fach solution should enter the objective functions GEC or TSP, which are

-

considered as the fitness function for this GA.

The roulette wheel method of reproduction is to be used in this research. It depends
upon the number of occurrences of each solution in a certain generation. l'o compute
this, a probability of selection for each solution should be calculated from the fitness
value of that solution as shown below. Also, the expected count of the solution found
from the fitness value and the average fitness should be calculated in order to find the
actual count of the solution which determines the number of copies for each solution in

the next generation.
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The probability of selection should be caleulated for each solution 1 as follows:

1

PSC]CCti [l P T L L EXTEETRET L
2

Where,

fi: fitness value of solution 1

3 fi: total fitness for all solutions {chromosomes).

The expected count is then found for each solutron i to determine its actual occurrences

in the generation as follows:

E{count ;)= {_— ................................. 3.9

where,

f= average of the selection probabilities.
Equation (3.9) should be applied to each solution as shown in Tables 3.10 and 3.11. The
expected count value will determine the number of occurrences of each solution in the
mating pool. According to the expected count value of each solution, 2 mating pool is to
be constructed to do the crossover and mutation. Each solution should be repeated
{E(Count)} times to form the reproduced generation. A generation is defined as a set of
cell formation solutions determined by the initial population size of the genctic
algorithm, this set of solutions contain the genetic materials that will be handled by the

genetic algorithm through all GA iterations.

3.3.4 Crossover and mutation
The purpose of crossover is to create children whose genetic material resembles their
parent’s genes in some fashion. Crossover combines building blocks of good solutions

from different chromosomes. Crossover is not used to produce all members of the
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Table 3.10: ‘The roulette wheel reproduction for the GEC objective function.

Chromos- | Initial population f(x) Pselect | Expected | Actual | Mating pool after
ome no. (randomly from £/5f count count reproduction
_ sclected) equation fxy/f
(3.1) o .
1 121,22112 0.154 0.0462 0.462 0 221,22221
2 221,22221 0546 | 0.1638 | 1.638 2 221,22221
3 ,1212 0.500 0.1501 1.501 2 122,12121
4 2,21222 0.167 0.0500 0.500 0 122,12121
5 1,12211 0.357 0.1072 1.072 1 111,12211
6 ,22121 0.250 0.0751 0.751 i 211,22121
7 21,21111 0.400 0.1201 1.201 1 22121111
8 22,11112 0.400 0.1201 1.201 1 122,11112
9 212,21222 0.308 0.0924 0.924 1 212,21222
10 212,12121 0.250 | 0.0751 0.751 1, | 21212121
Sum - 3.3308 1.000 | - 10.00 10
Average T 0.3331 0.100 1.000 1.0
Max . 0.546 0.163 1.638 2.0

Table 3.11: The roulette wheel reproduction for the TSP objective function,

Chromos- Initial f(x) g(x)= Pselect | Expected | Actual | Mating pool
ome no. | population from 1/(x) | gx)/>¢g count count after
(randomly | equation g(x)/g reproduction
selected) (3.7
1 54312 8 0.125 | 0.0816 0.816 1 54312
2 32145 7 0.143 | 0.0933 0.933 1 32145
3 54123 7 0.143 0.0933 0.933 1 54123
4 45123 8 0.125 | 0.0816 0.816 1 45123
5 51234 7 0.143 0.0933 0.933 1 51234
6 12453 9 0.111 0.0726 0.726 0 35214
7 53241 6 0.167 0.1088 1.088 1 53241
8 35214 4 0.250 0.1633 1.633 2 35214
9 4+1235 5 (.200 0.1306 1.306 1 41235
10 24351 8 0.125 0.0816 0.816 1 24351
Sum 1.5313 1.000 1000 10
Average | 0.1531 0.100 1.000 1.0
Max 0.250 0.163 1.633 2.0

next generation. The crossover rate is the proportion of the next generation produced by

crossover, which will be 0.6 for our illustrative example. So, the number of

chromosomes that will be crossed over = crossover rate x population size = 0.6 x 10 =6
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Mutation is applied to each child individually after crossover according to the mutation
rate. It provides a small amc;unt of random search and helps ensure that no point in the
scarch space has a zero probability of being examined. The mutation manipulates in
some members of the population and puts it in the new population to be evaluated.
Normally, the mutation works on each member separately, not like the crossover, which
works on pairs. Mutation is used to rejuvenate the search, extending the search into

previously unexplored areas.

If mutation probability Pm = 0.1, then the number of bits to undergo mutation (NM)=
(Pm) * (# of bits transferred). For the GEC objective function the number of bits
transferred = (number of machines + number of parts) x population size = 8 x 10 =80,

so NM = 0.1 x 80 = 8. But for the TSP NM = 5x 10 x 0.1 = 5 bits will be mutated.

In this thesis, the GA utilizing the GEC uses one crossover and a combination of two
mutation techniques, while that utilizes TSP uses combinations of three crossover and
five mutation techniques. So, the number of chromosomes that will be crossed over or

mutated is partitioned equally between these techniques.

The crossover and mutation techniques used are dependent on the representation of the
problem. The float representation of the GEC objective function and the permutation

representation of the TSP are discussed in details in section 3.3.1.

3.3.4.1 Float representation

The following crossover and mutation techniques are applied to the chromosomes in

the mating pool as shown in Table 3.12.
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The simple float crossover operator randomly selects a cut point. The two parents are
then split at this point, and concatenating the segments from both parents creates
children. For example chromosomes 1 and 2 ( Table 3.12, column 5) are crossed over at
site 4:

Chromosome 1:211,22121

Chromosome 2:221,21111
The following two offsprings are created from these two parents:

Offspring 1:211,21111

Offspring 2:221,22121

Table 3.12: Crossover and mutation in the GEC objective function.

No Mating pool Mate Cross | Before crossover After After
after (Random | -over crossover mutation
reproduction | selection) site
1 221,22221 1 2-4 211,22121 211,21111 1 211,21121
2 221,22221 - 2-4 221,21111 221,22121 | 221,22121
3 122,12121 3 - 12212121 12212221 |1 12212211
4 12212121 5 2-5 221,22221 221,22121 (121,21121
5 111,12211 6 2-3 122,12121 111,12211 | 111,12211
6 211,22121 1 1 111,12211 122,12121 | 12212122
7 221.21111 2 1 221,22221 221,22221 | 221,22221
8 12211112 - - 12211112 12211112 [ 12211112
9 21221222 - - 21221222 21221222 21221212
10 21212121 - - 21212121 | 21212121 421212221

The two mutation techniques used are:

- The uniform mutation operator randomly selects one of the variables, vi, from a

parent and sets it equal to a random number uniformly distributed between the

variable’s lower (ai) and upper (bi) bounds. Where ai=1 and bi=2, in our example.

- 'The boundary mutation operator randomly sclects one of the vanables from a parent

Chromosome 1:221,22121

New

:121,21121

and randomly sets it equal 1o its lower (ai) or upper bound (b1).

Chromosome 3:122,12221

52

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



New :122,12211

3.3.4.2 Order-based representation
The following crossover and mutation techniques are applied to the chromosomes in

the mating pool as shown in Table 3.13.

1. Single point crossover:
After reproduction, single point crossover may proceed in two steps. First, members of
the newly reproduced strings in the mating pool are mated at random. Second, cach pair
of strings undergoes crossing over as follows: an integer position k along the string is
selected uniformly at random between 1 and the string length less one [1,L-1]. Till this
point the permutation is copied from the first parent, then the second parent is scanned
and if the number is not yet in the offspring it is added. For example the two
chromosomes 1 and 2 in Table 3.13, column 5 are crossed at site 2 as follows:

Chromosome 1: 352 14

Chromosome 2: 5324 1

Offspringt  :35241

Offspring2 :53214

Table 3.13: Crossover and mutation in the TSP objective function.

No Maung pool Mate Cross | DBefore After Before After

after (Randomly | -over | crossover | crossover | mutation | mutation

reproduction selected) sie

1 54312 4 2-4 35214 35241 35241 | 35241
2 32145 3 2-4 53241 53214 | 53214 | 54213
3 54123 - - 54312 52143 | 52143 | 52143
4 45123 5 2-5 32145 [224315 | 24315 | 23415
5 531234 6 2-5 45123 45123 45123 | 45123
6 35214 1 2 51234 54123 54123 | 52143
7 53241 2 2 54123 54123 | 54123 | 54123
8 35214 - - 35214 35214 35214 | 31254
9 41235 - - 41235 41235 41235 [ 41235
10 24351 - - 24351 | 24351 1 24351 | 25143
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2. Partially-Mapped Crossover (PMX)
To exchange ordering and value information among different strings we present 2
new genetic operator called partially-mapped crossover, because 2 portion of one
string ordering is mapped to a portion of another and the remaining mformation is
exchanged after appropriate swapping operations (Goldberg and Lingle, 1985).

Chromosome 3: 54312

Chromosome 4:32 145
PMX proceeds as follows. First, two positions are chosen along the string uniformiy
at random. The substrings defined from the first number to the second number are
called the mapping sections. Next, we consider each mapping section separatély by
mapping the other string to the mapping section through a sequence of swapping
operations. For example, if we pick two random numbers say 2 and 4, this defines
the two mapping sections, 4-3-1 in Chromosome 3 (in the above example), and 2-1-4
in Chromosome 4. The mapping operation, say from Chromosome 3 to
Chromosome 4, is performed by swapping furst the 4 and the 2, the 3 and the 1, and
the 1 and the 4, resulting in a well-defined offspring. Similarly the mapping and
swapping operation of Chromosome 4 to Chromosome 3 results in the swap of the 2
and the 4,the 1 and the 3, and the 4 and the 1. The resulting two new offsprings are
as follows:

Offspring 1: 52143

Offspring 2: 24315

3. Order Based Crossover:
Given two chromosomes, a subsct of permutations is chosen from the list. To create the

first offspring the first chromosome is copicd and the sclected subset of parts/machincs
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is reordered to match that found in the second chromosome. The second offspﬁng 18
similar, a copy of the second éhromosome with the first chromosome ordering imposed.
Chromosome 5: 45123
Chromosome 6: 51234
Offspring 1: 45123
Offspring2: 54123
For the TSP the mutation operator must be customized, since randomly changing a bit
will likely result in an invalid path. A variety of mutation operators have been employed
on the chromosomes of Table 3.13, column 7:
1. Three-swap mutation: three-way swap of three randomly chosen genes in a
permutation.
Chromosome 8:35214 New :31254
2. Shift mutation: a randomly selected section of 2 gene is moved as a block a random
position 1n that gene.
Chromosome 10: 24351 New :25143
3. Swap mutation: the values contained in two random positions are exchanged.
Chromosome 2: 53214 New :54213
4. Adjacent swap mutation: it exchanges the contents of two consecutive positions within
the chromosome, so it may be considered as a restricted version of the swap mutation
operator, in that cut or exchange positions are always consecutive.

Chromosome 4:24315 New :23415

5. Inversion mutation: two random points within the string are selected and the segment ™ ’

between them 1s inverted.

Chromosome 6:54123 New :52143
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3.3.5 Replacement

Using the elitism strategy of replacement, the best solution in the current population is
added to the new population replacing the worst solution. After mutation the new
population of chromosomes are evaluated using the objective function. Table 3.14 shows
the elitism strategy for the GEC objective function where solution one (chromosome 1)

in the new population is the worst solution, so it is replaced by the best solution in the

current population.

Table 3.14: The elitism replacement strategy for the GEC objective function.

No | After-mutation f(x) =T After replacement f(x) =T
1 211,21121 0.2308 221,22221 0.5455
2 221,22121 0.4545 221,22121 0.4545
3 122,12211 . 0.2500 122,12211 0.2500
4 121,21121 0.7778 121,21121 0.7778
5 111,12211 0.3571 111,12211 0.3571
6 122,12122 0.4545 122,12122 0.4545
7 221,22221 0.5455 221,22221 0.5455
8 122,11112 0.4000 122,11112 0.4000
9 212,21212 (0.4545 212,21212 0.4545
10 212,12221 0.3333 212,12221 0.3333

Standard deviation 0.1576

Table 3.15 shows the elitism strategy for the TSP objective function where solution two

(chromosome 2) in the new population is the worst solution, so it is replaced by the best

solution in the current population.

'I'able 3.15: The elitism replacement strategy for the TSP objective function.

No After Distance g(¥)= After Distance glx)=
mutation | function 1/f(x) | replaccment function f(x) 1/£(x)

£(x)
1 35241 5 0.200 35241 5 0.200
2 154213 11 0.090 35214 4 0.250
3 521453 8 0.125 52143 8 0.125
4 | 23415 9 0.111 23415 . 9T 0.111
5145123 8- 0.125 45123 8 0.125
6 | 52143 8 0.125 521453 8 0.125
7 154123 7 0.143 54123 7 0.143
8 | 31254 6 0.167 31254 6 0.167
9 | 41235 5 0.200 41235 5 0.200
P10 | 25143 8 0.125 251453 8 0.125
Standard deviation 0.0366
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3.3.6 Termination

The GA moves from generf;ltion to generation selecting and reproducing parents until a
termination criterion is met. The most frequently used stopping criterion is a specified
maximum number of generations. Another termination strategy involves population
converge criteria. In general, GA will force much of the entire population to converge to
a single solution. When the sum of the deviations among individuals becomes smaller
than some specified threshold, the algorithm can be terminated. The algorithm can also
be terminated owing to a lack of improvement in the best solution over 2 specified
number of generations. Altematively, a target value for the standard deviation of the
evaluation measure can be established on the basis of some arbitrasily ‘acceptable’
threshold. Scveral strategies can be used in conjunction with each other. In this thesis a
hybrid termination approach was adopted to check the near-optimal path. Termination
parameters, which are the target standard deviation among the fitness values, and the
maximum number of iterations or generations, were hybridized in order to cancel any

redundant computations, hence minimize the CPU time.

The hybrid termination strategy aims to reach the target standard deviation before
reaching the maximum number of generations, a function for checking the standard
deviation of the current generation and comparing it with the target standard deviation
(I'SD) is built. If the first is less than the sccond, so the GA should terminate, otherwise,
the system will complete GA operations until reaching the TSD or the maximum

number of generations.

TSD = Z Xi~ N (3.10)
. n-—1i
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e, e,

7 =——t M=l ———— | (3.12)
Y M,N, mn~3 MN,
r=1 r=I

where,

m: number of machines.

n: number of parts.

M.: number of machines in the " cell

N,: number of parts in the ™ cell.

¢,: number of 1 within the machine/part groups.
e,: number of 17 outside the machine/part groups.
k: number of cell.

n:grouping efficiency.

q: weighing factor 0 £ g < 1).

Grouping efficiency ranges from 0 to 1. Higher grouping efficiency means the more
structured the solution is. In turn it means that a solution contains fewer exceptional
clements. M1 is the ratio of the number of ‘s’ in the diagonal blocks of the
rearranged  matrix to the total number of possible ‘15’ in all the diagonal blocks. This
measure focuses on the within cell utilization or the within ccll density. It is urged
that the higher is this value, the greater is the similarity (in terms of processing
requirements) between the components included in each cell and the greater is the
utilization of the machines in this cell. The second element 12 is the ratio of the
number of ‘1s’ in the off-diagonal blocks to the total number of possible ‘18’ in the
off-diagonal blocks. This measure focuscs on the intercell material handling cost.

Higher value of this mecasure means that only a few operations are carned out in
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more than one cell, therefore, maximizing this measure is similar to minimizing
materials handling. Many researchers use a value of q=0.5, which is also used in this

thesis.

Although grouping efficiency is used as a measure of the quality of solutions, it suffers
some limitations. For example a very bad solution with many exceptional element often
shows efficiency figures around 75% (Sarker and Mondal, 1999). Also, for large matrices,
the denominator of the first term is more or less of the same order. When the matrix size
increases, the effect of exceptional elements becomes smaller, and in some cases, the

effect of intercell moves is not reflected in the grouping efficiency.

3.4.2 Cell index

Cell index (Mukattash, 1997) measure is considered to be new since, the efficiency of
individual cells can be determined. Unlike the existing measures in  the literature CI
measure can distinguish between two manufacturing systems having the same sum of
voids and exceptions, because cell size 1s taken into consideration and the matrix size 1s
ignored. Since the Cl is the sum of all individual cells, then the designer can discover the

source of high and low value of goodness measure.

Cl=L King | (3.13)
n ki + Vi +Ci

Where,
n: Total number of machines in the matrix
n;: number of machines in the ith diagonal block [ith cell]
v: number of voids in the ith diagonal block
¢, : number of exceptional elements in the ith off-diagonal block

k : number of operations in the ith diagonal block |total number of ones in the ith
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cell]
p: total number of diagonal blocks [total number of cells in the matrix]

k.+¢, : total number of operations in the matrix

Propertics of the cell index measure (Mukattash, 1997):

1. Non negativity: All the elements of the cell index are positive.

2. Physical meaning of extremes. When all the ones are outside the diagonal block
(condition of zero efficiency), then CI=0, because k1= k2= kp= 0. On the other
side, for perfect diagonal block (condition of 100% efficiency), the CI=1, because:
vl=v2 =vp=0, and e1= 2= ep=0.

3. From properties 1 and 2 it is found that 0 = CI = 1.

For the illustrative example, these grouping measures will be used to evaluate the
efficiency of the block diagonal form produced in Table 3.8.

Table 3.8: Intermediate solution
p3 p5 p2 pl p4
m3 1 0 1 0 0
ml |.-1 1 i 1 0
m2| 0 0 0 1 1

Grouping efficiency n:

m=3, n=5, m1=2, m2=1, n1=3, n12=2, cd=7, e0=1, k=2;
So,
n,=7/2 x 3)+(1 = 2) =0.875,
N.=1-(1/(3 x 5-@2 x 3)+(1 x 2))=0.857,

then n=0.5 1,+0.51,=0.86.

61

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Cell index CI:

n=3, n1=2, n2=1, v1=1, v2=0, e1=1, 2=0, k1=5, k2=2, then

CI=(5 x 2)/ (5+1+1)/3 + (2 x 1)/ (2+0+0)/3=0.48 +0.33 =0.81.

The percentage of goodness for the first cell is 0.48/0.81 = 59.2%, and the percentage
for the second cellis 0.33/0.81 = 40.7%. This indicates that the first cell which contains

machines m1 and m3 is better than cell two which contains only one machine (m2).

3.4.3 Experimental results (Graphical User Interface)
The experimental result module takes information from the GA module and displays the
results on a separate module. The displayed data 1s:

1. grouping efficacy

2. grouping efficiency

3. TSP results

4. number of voids

5. number of exceptional elements

6. maximum number of cells

7. maximum number of generations

oo

a plor of the maximum, average and standard deviation values of solutions

vanation with the number of generations.

3.5 Optimization of the Control Parameters for the Genetic Algorithm

Using Metalevel GA
The task of optimizing a complex system presents at least two levels of problems for the
system designer. First, a class of optimizing algorithm must be chosen that is suitable for
the application to the system. Second, various parameters of the optimization algorithm
nced to be tuned for cfficiency. Even when an appropriate class of optimization
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algorithm  is available, there are usually various parameters that must be tuned. Often the
choice of parameters can have significant impact on the effectiveness of the optimization
algorithm. The problem of tuning the primary algorithm represents a secondary, or

metalevel, optimization problem.

In this thesis, the genetic algorithm (GA) is used to optimize the manufactuning cell
formation problem. GA is applied to the two level tasks of identifying efficient GA

parameters and also to solve the manufacturing cell formation optimrzation problem.

That genetic algorithms can be viewed as the iterated probabilistic application of a set of
operators on a population, and that in most cases these operators are static that is to say
that their forms and parameters are fixed and apply uniformly to the whole population
i.c. they are global. Population-level adaptation algorithms can be typified as using a fixed
set of global operators, but allowing their parameters to vary over time. The most

important parameter is of course the probability of application.

We now describe how to optimize the performance of GA whose search space is defined
by four control parameters (population size, target standard deviation, crossover
probability, and mutation probability), and to identify the optimal parameter settings. GA
performed the searches for the optimal GA parameters, which demonstrates the
cfficiency and power of GA as metalevel optimization techaiques. A metalevel GA could

similarly search any other space of parameterized optimization procedures.

3.5.1 The space of the genetic algorithms
‘This study is limited to a particular subclass of GA’s characterized by the following four

paramctcrs:
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1. Population size (n): the population size affects both the ultimate performance and
the efficiency of GA. GA generally does poorly with very small populations, becausé
the population provides an insufficient sample size for most hyperplancs. A large
population is morc likcly to contain rcprescatatives from a large aumber of
hyperplanes. Hence, the GA can perform a more informed search. As a result, a large
population discourages premature convergence to suboptimal solutions. On the
other hand, a large population requires more evaluations per generation, possibly
resulting in an unacceptably slow rate of convergence. In the current experiments,
the population size ranged from 10 to160 in increments of 10.

2. Crossover Rate (Pc): the crossover rate controls the frequency with which the
crossover operator is applied. In cach new population, Pc x n structures undcrgo
crossover. The higher the crossover rate, the more quickly new structures are
introduced into the population. If the crossover rate is too high, high-performance
structures are discarded faster than selection can produce improvements. 1f the
crossover rate is too low, the search may stagnate (find local optima) due to the lower
esploration rate. The current experiments allowed 16 different crossover rates,
varying from 0.25 to 1.00 in increments of 0.05.

3. Mutation Ratc (Pm): mutation is a sccondary scarch operator which increascs the
variability of the population. After selection, each bit position of each structure in the
new population undergoes a random change with a probability equal to the mutation
rate Pm. Consequently, approximately Pm x n x L mutations occur per generation
where L is the chromosome length. A low level of mutation serves to prevent any
given bit position from remaining forever converged to a single value in the entire
population. A high level of mutation yiclds an essentially random search. The current

experiments allowed mutation rate to change from 0.0 to 1.0 exponentially.
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4. Target standard deviation (I'SD): the most frequently used stopping criterion is a
specified maximum number of generations. The algonthm can also be terminated
owing to a lack of mmprovement in the best solution over a specified number of
generations. Alternatively, a target value for the evaluation measure can be
established on the basis of some arbitranly ‘acceptable’ threshold. In this thesis,
termunation parameters, which are the target standard deviation (1SD), and the
maximum number of iterations or generations, were hybndized to check the near-
optimal path. The current experiment allowed 10 different values varying from 0.005

to 0.05 1n increments of 0.005.

We denote a particular GA by indicating its respective values for the parameters GA (n,
TSD, Pc, Pm). Early work by De Jong (Grefenstette, 1986) suggests parameter settings
which have been used in a number of implementations of genetic algorithms. He define
the standard GA as GAs = GA (50, 0.6, 0.001), so this was the natural choice for the

metalevel GA.

In some cases, it is possible to predict how vanations of a single parameter will affect the
performance of the GA’s assuming that all other parameters are kept fixed. However, it
15 difficult to predict how the various parameters interact. For example, what is the effect

of increasing the population size, while lowerning the crossover rate?

A common approach of metalevel GA 1s to adjust onc or more parameters dynamically
in accordance with the performance of the algorithm or some measuxlcla-rcll;anﬁr}r of the
populanon. A well-known and popular approach 1s to keep statistics on the performance
of offsprings gencrated by vanous reproductive operators relative to their parents (Smith

and TFogarty, 1997). Penodically, sweesgfe/ operators, which produced the best solution of
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the GA, are rewarded by increasing their probability of application relative to less
successful operators. This approach does however require extra memory, since it is
usually found necessary to maintain family trees of the operators which led to a given

individual, in order to cscape from local optima.

3.6 Summary

In this chapter a complete discussion of the manufacturing cell formation problem is
presented. The genetic algorithm methodology which uses roulette wheel selection, two
objective functions, a combination of crossover and mutation techniques, elitism
replacement and hybrid termination criteria is described in details. This chapter also
presents threc methods to evaluate the efficiency of the block diagonal form. In addition,
a new way of optimizing the GA parameters is described where metalevel GA is used to

solve the two levels of the manufacturing ¢ell formation problem.
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4- EXPIREMENTAL RESULTS



4.1 The Programming Language: MATLAB

MATLAB i1s becoming incrc;asingiy popular among students, researchers, technicians and
engineers because of MATLAB features such as immediate graphing facilities, built-in
functions, the possibility of adding user-written functions and simple programming. The
package provides useful tools for interfacing with external programs and data sets , as
well as options for keeping records of calculations which can be later transformed into
technical reports. The versatility of the basic MATLAB package can be enhanced by
separately-available softwarees designed for specialized, and advanced fields of

application (Biran and Breiner, 1999).

MATLAB is a technical computing environment for high-performance numeric
computation and visualization. MATLAB integrates numerical analysis, matrix
computation, signal processing, and graphics in an casy-to-use environment where
problems and solutions are expressed just as they are written mathematically- without

traditional programming.

The name MATLAB stands for MATrix LABoratory. It was originally written to provide
easy access to matrix software. MATLADB is an interactive system whosc bastc data
element is a matrix that does not require dimenstoning. This allows you to solve many
numerical problems in a function of the time it would take to write a program in a

language such as Fortran, Basic, or C.
MATLAB has cvolved over a period of vears with input from many uscrs. Typical uses

included general purpose numeric computation, algorithm prototyping, and special

purpose problem solving with matrix formulations.
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MATLAB also features a famdy of application-specific solutions that we call softwarees.
Very important to most lusers of 1t, softwarees arc comprehensive collections of
MATLAB functions (M-files) that extend the MATLAB environment in order to solve
particular classes of problems. May be the most important feature of MATLAB, and one
that we took care to perfect, is its easy extensibility. This allows you to become a

contributing author too, creating your own applications.

In this thesis MATLAB is used to construct a2 comprehenstve software which solves the
manufacturing cell formation problem using the genetic algonthm.
The main characteristics of this software are the following:

- Hierarchical structure

- The flexibility to choose between two solving methodologies:

1. Using the simple GA to solve the MCFP after specifying these parameters:
population size, target standard deviation and mutatton and crossover rates.

2. Using metalevel GA where the control parameters (population size, target
standard deviation and mutation and crossover rates) are determined by the first
level GA and used to solve the second level GA, which gives the cell formation
problem solutions.

- Ability to switch between two objective functions (grouping cfficacy (GLC) ,and
travelling salesman problem formulation (FSP) ).

- Flexibility to specify the maximum number of cells (k) so that, the solved

matrix should be partitoned into a number of cells less or equal to this number.

- Hybnd termination strategy (target standard deviation, and maximum number of

generatons).
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‘The reader can find the computer implementation of the manufacturing cell formation
problem in Appendix A. It describes the MATLAB software and its flexible and efficient
characteristics and gives the details about the most important internal functions and
graphical user interfaces. In addition, Appendix B presents the different screens of the

MATILAB software.

4.2 General Observations of the Metalevel Genetic Algorithm

This experiment identified GA,, = GA(30, 0.005, 0.95, 0.01). The performance
improvement between standard GAs (50, 0.6, 0.001) and GA,,, can be attributed to an
interaction among a number of factors. For example, GA,,,, uses a smaller population,
which allows many more generations within a given number of trals where, GAy,
iterated through an average of twice as many generations as GAs. The smaller populaton
size is apparently balanced by the significantly increased mutation rate and crossover rate
in GA,. A higher crossover rate tends to disrupt the structures selected for
reproduction at a high rate, which is important in a small population, since high
performance individuals are more likely to quickly dominate the population. The higher

mutation rate also helps prevent prematurc convergence to local optima.

On the other hand, if a very small population size is used (.e., n = 10), the number of
representatives from any given hyperplane is so small that the selection procedure has
insufficient information to properly apportion credit to the hyperplanes represented in
the population. As a result, a relatively good structure may overrun the entire population
in a few generations. Unless the mutation rate 1s high, the GA will quickly converge to a
suboptimal solution. In contrast, random scarch will usually locate at least one high

performance point within the first thousand trials, leading to performance. That s,
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random scarch is fairly though competitor for search strategies when the population size

1s small.

With 2 larger population and higher mutation rate, the population will tend to contain
more variety, thus increasing the random aspects of the GA ie. tendsto reduce the
effects of selection, resulting in a less focused search. The lower crossover balances these

aspects, which tend to enhance the selective pressure.

Mutation rates above 0.05 are generally harmful, with performance approaching that of
random search, with rates above 0.1 regardless of the other parameter settings. The
absence of mutation is also associated with poorer performance, which suggests that
mutation performs an important service in refreshing lost values. Best performance can

be obtained with a population size in the range of 30-100 structures.

The performance data also suggests other regularities, for example, in small populations
(20 to 40 structures), good performance is associated with either a high crossover rate
combined with a low mutation rate or a low crossover rate combined with 2 high
mutation rate. For mid-sized populations (30 to 90 structures), the optimal crossover rate
appears to decrease as the population size increases. This 15 reasonable since, in smaller
populations, crossover plays an important role in preventing premature convergence. In
summary, the performance of GA’s appears to be a nonhnear function of the control
parameters. l-lowéver, the available data is too limited to confirm’ or disconfirm the

existence of discontinuities or multiple local optima in the performance space of GA.
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4.3 Experimental Results

The MATLAB software is tested on ten data sets (see Table 4.1) from the literature
to study its effectiveness as a clustering tool. To maximize cell design flexibility, an
implementation was adopted that allows the user to employ various representation

schemes, sets of operators, and evaluation measures. This flexibility is gained through

the MATLAB software.
Table 4.1: Experiments Data Sets (Test Problems)

No | Incidence matrix Refercnce Size
i King {1980a) Mukattash (1997) 6x10 25
2 Chen and Guerrero (1994) Mukattash (1997) 6x15 40
3 Chu and Hayya (1991) Zhao et al. (1995) 99 32
+4 King (1980b) Mukhopadhyay et al. (2000) 10x8 25
3 Viswanathan (1996) Mukattash (1997) 1012 | 41
6 Simple Chan and Milner (1982} Malave and Ramachandran, (1994) | 15x10 | 46
7 Complex Chan and Milner (1982) Malave and Ramachandran, (1994) { 15x10 | 49
8 Chandrasckharan and Cheng et al. (1998) 8x20 61

Rajagopalan (1986)
9 King (1980¢) Malave and Ramachandran, (1994) | 14x24 | 61
10 | Burbadge (1960) Teffrey et al. (1996) 20x35 | 136

e total number of ones (operations) in the incidence matrix.

For data sets taken from the literaturc, the maximum number of permissible cells,

k_,. was initially set equal to the best known number of cell, k", as determined by
other cell formation algorithms. The maximum number of generations needed 15
dependent on the size of the problem. Because GA is stochastic search algorithm,
the number of generations needed to solve a particular problem also depends on the
composition of the initial population. Figure 4.1 shows the great improvement on the
solution of the GA, from the first generation till the generation, which gives the best
solution. Note the great improvement in the best solution which changed from 0.38

-~

to 0.86 in 34 generatons Le., 126.3 ) improvement.
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Figure 4.1 The best, average and standard deviation
variation with the number of generations.

The data sets used to evaluate this clustering technique are of varying size and
complexity. In each case, correct grouping is defined as being equivalent to the best
known configuration provided in the literature, on the basis of grouping efficacy and
grouping efficiency. Table 4.2a summarizes the cxperimentation results for the ten
sample data sets. In all cases, the simple GA was able to determine a configuration with
grouping cfficacy measure equal to any previously reported results (except for problem 2
and  9). On the other hand, Table 4.2b summarizes the tesults of using the metalevel GA
to solve the data scts. It is clear that these results are much better than thosc of the
simple GA, where data sets aumbered one, three, five and nine results outperforms those
of the simple GA and even the best valucs found in the literature. This right except for
data set two, this is because it could happen that GA could theoretically solve a certan
problem, but it will not return the correct answer. This is because of the random nature

of the algonthm and its reliance on natural sclection.
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Table 4.22: The experimentation results for the 10 sample data sets using simple GA.
k': optimal no. of cells presented in the literature, Kmax: Optimal no. of cells achieved by simple

Data Benchmark Simple GA results
set
No. k-] T 7, Cl r 7 Cl | TSP TSP € | e | Knw
Parts machines
1 2 [ 711 | 850 | 703 | 719 | 850 | 703 16 18 217 2
2 2| 641 | NA | 63.7 | 604 | 767 | 58.6 38 38 g {131 3
3 3| 735 | 80.8 { 724 | 735 | 89.8 | 724 28 27 7121 3
4 3| 822 | 925 | 819 | 822 | 925 | 819 20 18 2|31 3
5 31589 | 789 | 580 | 389 | 789 | 58.0 38 45 8 (15[ 3
6 3 [ 920 1 960 | 92.8 | 920 | 960 | 92.8 22 16 0|4 3
7 3| 854 | 945 | 861 | 854 | 945 | 861 25 26 5131 3
8 3| 8.2 ] 958 1 844 | 852 | 958 | 844 38 30 9104 3
9 4 | 517 | 77.6 | 59.5 | 500 | 743 | 524 58 58 1[5 3
10 41757 | 881 | 755 | 75.7 | 881 | 755 67 90 2 141] 4

Table 4.2b: The experimentation results for the 10 sample data sets using metalevel GA.
ki: optimal no. of cells presented in the literature, Kemes: optimal no. of cells achieved by metalevel

GA.

Data Benchmark metalevel GA results
set
No. kb r 7, Cl T " Cl1 TSP TSP € | € | Kmax
Parts machines
1 21 711 85.0 | 703 | 724 | 863 | 686 13 17 4| 4 3
2 2 641 NA 63.7 61.7 20.1 61.8 30 34 11| 7 3
3 3| 735 | 89.8 | 724 | 743 | 891 | 704 21 22 6l 3 3
4 3| 822 | 925 | 819 { 822 | 925 | 819 20 18 213 3
3 3 58.9 78.9 58.0 59.6 80.5 58.3 33 40 10 | 11 3
6 3 92.0 96.0 92.8 92.0 96.0 92.8 22 16 0| 4 3
7 3] 854 | 945 | 861 854 | 945 | 86.1 25 26 513 3
8 3 | 852 935.8 8§14 85.2 95.8 84.4 38 30 90 3
9 435171 7761 3595 | 61.8 | 814 | 624 50 56 3131 4
10 41 757 | 881 ] 755 | 757 | 881 [ 755 . 67 20 2141 4

The computational times depends on many factors such as the number of gencrations
the permissible number of cclls and of course, the size and complexity of the initial
matrix. They ranged from two to forty minutes. The problem complexity may be affected
by the number of exceptional elements in the machine-part incidence matnx. For
example, problems number 6 and 7 have the same number of parts and machines.
Problem 6 has no exceptional clements while problem 7 has 5 exceptional clements after
grouping. 'The computational times for the two problems (3.1 minutes for problem 6
and 3.88 minutes for problem 7) have, to a certain extent reflected the complexity of the
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problems. The cell formations for selected data sets are shown in Tables 4.3 to 4.6. The
simple Chan and Milner (1982) data set number 6, taken from Malave and
Ramachandran, (1994), is a 15 x 10 problem containing four voids and no exceptional
elements (no bottleneck machines) and is shown with its solution in Tables 4.3 and 4.4.
The next data set which is Burbidge, (1960) 20 x 35 incidence matrix taken from (Jeffrey
et al, 1996) is shown in Table 4.5. The solution for this data set which contains two
exceptional elements i.e. two bottleneck machines and 41 voids, is displayed 1n Table 4.6.

“Table 4.3: The original incidence matrix for 15 x 10 Simple Chan
and Milner problem (1982), data set number 6.

Parts

1 2 3 4 5 6 7 8 9 10

1 6o o 1 1 0 1 0 0 0 0

2 1 o 0 o0 0 o0 1 ¢ O 1

3 o 1t 0 o 1 0 0 1 0 0

4 o 0o 0 1 o6 1 0 0 1 0

5 ¢ 1 0 o0 1t 0 0 1 ¢ O

6 o 0 1 0 0 1t 0 0 1 0

g 7 o 0 0 0 0 0 1 0 0 1
£ 8 o 1 0 0 1 0 0 1 0 0
< 9 o 0o 1t t 0 1 0 0 1 0
10 1 o6 0 o 0 0 1 ¢ 0 1

11 1 0 0 o0 0 0 1t 0 0 1
12 t 0o 0o o0 ¢ 0 1 0 0 1
13 6o 1 0 0 1 0 0 1 0 0
14 0 0 1 t 0 1 0 0 1 0O
15 1 0 0 0 0 0 1 0 0 1

Table 4.4: Metalevel GA solution for the 15 x10 Simple Chan and
Milner problem (1982), data set number 6.1'=92.0 n=96.0 C1=928

Parts

5 2 8 17 0 3 9 6 4

13 [1 1 1 0 o0 ¢ o0 o0 0 0

3 11 1 o 0 0o 0 0 0 0

8 11 it o o o o 0o o 0

5 11 1 (o o o 0 o 0 0

7 0 0 o |1 1 1 6o 0 0o 0

2 o 0o o |0 1 1 6 0 0 0

£ 10 [0 0 0 1 1 1 6 6 0 0o
Z 12 |0 0o o |t 1 1 o o o o
= 15 [0 0 0 1 1 1 0 0 0 0
1M {0 o 0 1 1 t 0 o o 0

1 0 0 o0 0 0 0 1 1 it 0

1 T o o0 o |o 1 1 1
4 lo o o 0o 0 g i 1 1 1

9 0 0 0 0 0 0 |1 1 1 1

6 Lo 0 0 0 0 1 0 1 1
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.8 n=88.1 CI=75.5

5

solution for the 20 x 35 Burbidge problem (1960), data set number 10. I'=7
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4.3.1 The importance of the cell index as a measure of the goodness of grouping
solutions

As mentioned in section 3.4.2, the cell index can distinguish between two manufacturing
systems having the same sum of voids and exceptions, because cell size is taken into
consideration. Metalevel GA 1s used to solve King 14 x 24 (1980c) problem which 15
taken from (Malave and Ramachandran, 1994). Two alternative solutions are produced
with the same sum of voids and exceptions, their results are given in Table 4.7. The
original matrix and its two altemnative solution matrices are given in Appendix C. The
results show that the two solutions have the same number of cells, which is four, the
same part families and the same sum of voids and exceptions. The only difference is the
machines contained in machine cells two and three, where machine number seven ts
taken out of cell two in solution one and placed in cell three tn solution two. As noted
grouping cfficacy and grouping efficiency are unable to detect this difference
significantly, whereas cell index measure indicates that solution two is more efficient.
This also, proves the ability of the metalevel GA to give alternative solutions to the cell

designer, which increases its flexibility as a cell formation technique. IS

Table 4.7; Alternative solutions with the same sum of voids and
exceptions for the 14 x 24 King (1980c¢) problem.

Solution 1 | eo=4, ev=30, ea+ev=34, ['=61.36, n=81.35, CI=61.20
Machines Parts

Cell 1 2,3,10, 11 3,4,21,24

Cell 2 1,7,12,13 6,7,8,18

Cell 3 1,5 1,2, 17,19, 20, 23

Cell 4 6,8,9, 1+ 5,9,10,11,12, 13,14, 15, 16, 22.

Solution 2 | e0=3, ev=31, eo+ev=34, ['=61.79, 1=81.38, C1=62.43
Machines Parts

Cell 1 2.3,10,11 3.4,21,24

Cell 2 1,12,13 6,7,8,18

Cell 3 1,5,7 1,2,17,19, 20,23

Cell 4 6,8,9, 14 5,9,10,11, 12 13, 14,15, 16, 22.
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4.3.2 Effects of constraining the number of permissible cells

The metalevel GA using thé TSP objective function can not predict the effect of varying
the maximum number of cells on the formed machine cells and part families. This effect
is obviously included in the GEC objective function because of its special type of
chromosome representation. The solutons generated by GEC objective function are

extremely dependent on the prion specification of the desired number of cells.

Specifying a maximum number of cells for the GA simply places an upper bound on the
number of cells. Recalling that the GA is an optimization tool, it searches for the
maximum grouping efficacy value under this constraint. Let k__ be the maximum
number of cells permitted and k* be the optimal number of cells. If k_,, = k*, then in the
limit and in practice, the GA will find k* cclls. In effect, the upper bound constrain k_, 1s
not binding and has no effect on the number of cells formed or the grouping efficacy
value. However, if k_, < k*, the constramnt is binding, and the genetic algorithm will

produce a solution with, at most, k_, cells at 2 reduced grouping cfficacy value.

max

Because the optimal number of cells k* 15 generally unknown, experimentation focused
on comparing the GA solution to the best known number of the cells from the hterature,

k', as measured by grouping efficacy. Several experiments using the Chan and Milner

3 #
problems were conducted to demonstrate the effects of k,, as a constraint. Tables 4.8

niax

and 4.9 show the results of experiments with the metalevel GA when k >k, ie., the
maximum permissible number of cells exceeds the number of cells in the best known
solution from the literature. For the two Chan and Milner problems (data sets numbers 6
and 7), thc maximum number of cells specified was‘ k, . =4and k=5, (k"=3). The
results indicate that the GA solution of three cells is the appropnate number of cells. As

expected, no members are assigned to the additional k,, -k cell(s).
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Table 4.8: Solutions to the Simple Chan and Milner (1982},

problem number 6 ( knis > k* (I'=92.0 n=96.0).

Cell/Family I Machines Parts
Kmex = 4 and 330 generations
Cell/Family 1 13,385 528
Cell/Famuly 2 7,2,10,12,15,11 1,7,10
Cell/Famly 3 14,1496 39,64
Cell/Famly 4 nene None
Ko = 5 and 1000 generanons
Cell/Famuly 1 133,85 528
Cell/Faruly 2 7,2,10,1215,11 1,7,10
Cell/Family 3 1,4,14,9.6 3,9.6,4
Cell/Family 4 none None
Cell/Fanuly 5 none None

Table 4.9: Solutions to Complex Chan and Milner (1982},
problem number 7 (knax > k* (=854 n=94.5).

Cell/Family | Machines | Parts
Kenax = 4 and 400 generations
Cell/ Family 1 14,3,4.1,6 3.4.8.9
Cell/Eamily 2 15,13, 10,9, 8, 5 2,510
Cell/Family 3 12,11,2,7 1,6,7
Cell/Famuly 4 none none
Kinax = 5 and 1200 generations
Cell/Family 1 14,3,4,1,6 3,4,8,9
Cell/Famly 2 15,13,10,9,8,5 2,5, 10
Cell/Family 3 12,11,2,7 1,6,7
Cell/Famuly 4 none none
Cell/Family 5 none none

As the value of k_, increases, the state space the GA must explore also grows, thus
increasing, on average, the number of generations required. In practice, the number of
generations required increases at a much slower rate than the growth of the space. Figure
4.2 shows this phenomena for the Simple Chan and Milner problem over a range of k
from 3 to 5. Values in the graph represent the number of unique solutions in the statc

space for each valuc of k..
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Figurc 4.2: Average number of generations versus selected
values of k..

A cell designer might wish to begin with k. set to the maximum number of cells
believed practicable for the facility. In subsequent analysis, the value of k,, could be

progressively restricted to reflect limits arising from material handling constraints or

efforts to achieve effective team work.

To further analyze constrained aggregation, the Simple Chan and Milner problem, for
which k'=3, is examined. Given k_, = 2, the GA could produce four possible
configurations; any one of three different two-ccll configurations or a single cell. Table
4.10 displays the grouping efficacy for each of the four possibilitics for the Simple Chan
and Milner problem. The two cells that produce the minimum number of voids when
combined achieve the highest grouping cfficacy. In this way, the GA determimned the
optimal configuration under the binding constrant k_, =2.

e

Table 4.10: Comparison of the alternative configurations
for Simple Chan and Milner problem (ki =2.)

Combined o Cy r
1and 2 0 34 57.50
1and 3 0 35 56.79
2and 3 0 43 31.69

All3 0 86 30.67
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4.3.3 Comparing the GEC and the TSP results

The GEC and the TSP sdlutions to seven of the ten data sets are the same. But this
result can not be generalized. For example, this result is not applicable for the data set
shown in Table 4.11, where the GEC and the TSP solutions are not the same. See
Table 4.12 and 4.13.

Table 4.11: Sample data set

Parts
1 2 3 4 5 6 7 3 9 10
@ 1 1 1 1 0 0 0 0 0 0 0
£ 2 1 1 1 0 0 0 1 0 0 0
S 3 0 0+ 0 1 0 0 0 0 0 1
= 4 0 0 0 1 0 0 0 0 0 1
5 0 0 0 1 1 1 0 1 1 1

Table 4.12: The solution matrix for the sample data set using GEC objective function.
eo=2, ev=1, I'=83.3, n=93.9, CI=85.0

Parts
1 2 3 7 4 10 5 6 8 9
@ 1 1 1 1 0 0 0 0 0 0 0
E 2 1 1 1 ] 0 0 0 0 0 0
g 3 0 0 0 0 1 1 0 0 0 0
= 4 0 0 0 0 1 1 0 0 0 0
5 0 0 0 0 1 1 1 1 1 1

Table 4.13: The solution matrix for the sample data set using TSP objective function.
e0=0, ev=9, I'=65.4, n=82.7, CI=68.3

Parts
4 10 5 6 8 9 7 1 2 3
@ 5 1 1 1 1 1 1 0 0 0 0
£ 3 1 1 0 0 0 0 0 0 0 0
3 4 1 ] 0 0 0 0 0 0 0 0
p2 1 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 1 1 1 1

The two fitness functions give different configurations because each one has its own
objective. For the GEC the objective is to minimize the sum of voids and exceptions

(eot+ev = 3), while the TSP objective is to minimize the number of exceptions (eo= 0).
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4.4 Comparison with the Literature

The cell formation methodology used in this thesis offers several advantages over
existing methods. It simultaneously groups parts and machines into families and cells,
and climinates the need for visual analysis of the solution. It also offers improved
flexibility by allowing the cell designer to use various objective functions and incorporate
design constraints during cell formation. These capabilities allow alternative cell
configuration to be generated and reviewed easily. These advantages in addition to the
GA control parameters optimization using the metalevel GA, are some pomnts that can

be utilized to compare the work of this thesis with the previous work.

Mukhopadhyay et al. (2000), used a graph theoretic approach to group machines into
cells and parts into families based on the Modified Hamiltonian Chain. His approach
gives the machine sequence and the part sequence directly, so the incorporation of

constraints on the number of cells 1s not allowed.

Mukattash (1997) derived a modified approach for solving the p-median problem in
Group Technology by specifying the number of cells in advance and constraining the cell
size. The output of this approach are cells of machines, while parts are then assigned to
these cells so as to minimize the number of voids and or the number of exceptions. In
our algorithm using GEC objective function, the machine cells and part famihes arc

grouped concurrently.

In this thesis, part family formation problem is solved under the assumption that, the
machine or operation requirements are the part family differentiating attributes. Lee-Post
(2000), used a simple genetic algorithm to forn part familics based on a classification and
coding system. She used a coding system, which uscs five attributes to deseribe a part:
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shape, features, size, precision and material. So, part families are formed based on the
similarities in these attributes. It is evident that a different technique is required to form
machine cells based on the grouped part families, which increases the problem

complexity.

An alternative approach to the optimization of the GA control parameters is to allow the
GA to modify its own parameters dynamically during the search. Dimopoulos and Mort
(2001) used the genetic programming (GP) algorithm to achieve optimized control
parameters to solve the cell formation problem. They proposed that the operation of GP
is similar to any other evolutionary computation method in the sense that the Darwinian
principle of strife for survival is employed during the scarch for an optimal solution.
However, while most evolutionary algorithms evolve fixed-length strings of binary,
integer or real numbers, genetic programming evolves solutions in the form of computer
programs of variable length. However, for many optimization problems the number of
evaluations, which can be petformed in a reasonable amount of time and the problem
complexity would not allow the GP enough evaluations to modify its search techniques
to any significant degree. Thercfore the metalevel are important in that it identifies

approximately optimal parameter settings for the performance measure considered.

4.5 Summary

'This chapter gives a comparison betwecen the results produced by simple GA and the
metalevel GA, where the results proved that the metalevel GA almost always get better
solutions to the manufacturing cell formation problem. Also, the importance of the cell
index as a measure of the goodness of grouping solutton is emphasized. In addition, the
effect of constramning the number of permissible cells is examined in details. Finally, a

comparison with the literature is presented.

83

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



1so0e@ Sisayl Jo BIueD - ueplor Jo AlSIBAIUN JO AkeiqiT - paAISSaY SIYDIY |1V

5- SUMMARY, CONCLUSIONS
AND
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5.1 Summary

The manufacturing cell formation problem (MCFP) has been studied in this thesis. A
metalevel genetic algorithm approach has been employed to solve the two levels of the
MCFP, where the first level optimizes the GA control parameters and the second level

uscs these parameters to solve the MCEP.

The metalevel utilizes two objective functions each one is associated with its own
representation, and crossover and mutation techniques. The two objective functions used
are the grouping efficacy (GEC) and the Travelling Salesman Problem (ISP)
formulation. The grouping efficacy uses one crossover technique, which is the simple
crossover and two mutation techniques, which are uniform and boundary mutation. On
the other hand, the TSP uses three crossover techniques: single point, partially mapped,
and order based crossover and five mutation techniques: adjacent swap, three-swap, shift,

inversion and insertion mutation.

Ten data sets are adopted from literature to test the metalevel GA. Using the grouping
efficacy alternative solutions can be achieved through the specification of the desired
number of cells. These solutions and the solutions of the TSP are evaluated using three

grouping measures: grouping efficiency, cell index in addition to the grouping cfficacy.
In this research, a comprehensive MATLAB software is constructed to solve the MCEDP.

“T'he hierarchical structure is the most important characteristic of this software, which

consists of funetions and graphical use interfaces.
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The genetic algorithm technique uses roulette wheel selection, a combination of
crossover operators, a combination of mutation operators, elitism replacement strategy

and hybrid termination criteria.

The solutions for the ten data sets, which are obtained from the MTLAB software, are
analyzed in details and compared with those found in the literature. These solutions are
at least equal to any previously reported results. In addition the metalevel GA used in this
thesis to solve the MCFP is compared with the algorithms and methodologies found in

the literature.
Finally, conclusions and recommendations are discussed in details

5.2 Conclusions
A MATLAB software has been developed that uses metalevel genetic algorithm to solve
the cell formation problem. The method gencrates quality solutions and provided

improved flexibility for analyzing the cell formation problem.

The objective was to minimize the intercellular movements, since this will lead to reduce
material handling cost, simplify planning and scheduling, reduce work-in-process buffer

space and decrease throughput time.

The cell formation methodology uscd in this thesis offers several advantages over
existing methods. It simultancously groups parts and machines mnto families and cclls,
and offers improved flexibility by allowing the ccll designer to use various objective
functions and incorporate design constraints during ccll formation. “These capabilitics

Alow alternative cell configuration to be generated and reviewed easily.
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Visual identification of machine cells and part families for large matrices with 2
reasonable number of bottleneck machines would be very difficult using the final matrix.
This is particularly so when a strictly block diagonal form is not achieved. This is not the
case in the two objective functions used here, where the GA produces the cells and

families concurrently.

The unique representation used in the grouping efficacy objective function effectively
reduces the state space by incorporating the constraints into the variable formulation. A
standard integer programming solution technique cannot be employed without
significant modification because of the objective function’s inability to decode this
variable representation. However, for the genetic algorithm, the objective function is a

computer procedure that can easily decode and evaluate a solution.

Then, the GA approach allows the designer to incorporate or selectively remove
constraints on the number of permissible cells. }Jnconstrained solutions containing the
naturally occurring clusters can be generated as well as constrained solutions. By allowmng
alternative cell configuration evaluation, the power of the technique as a tool of analysis

ts extended.

The performance of the GA methodology was compared with several clustering
techniques found in the literature, where the goodness of grouping of the obtained
solutions is evaluated using three measures: grouping efficiency, cell index and grouping
efficacy. The cell index improved its ability to significantly distinguish between alternative

solutions with the same sum of voids and exceptions.
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‘The metalevel GA model found the ‘best known’ or better configurations in all the ten
data sets used during experimentation, proving it to be an effective, as well as flexible,
clustering technique. The best solution found in the literature for data set number two
was not achieved using this algorithm, this is because it could happen that GA could
theoretically solve a certain problem, but it will not return the optimal answer. ‘This 1s
because of the random nature of the algorithm and its reliance on natural selection,
mutation and crossover. Naturally, it could happen that a certain flow of events that
would lead to a correct solution will not occur and thus a solution will not be found.
However, by using several unrelated populations we have decreased the probability of
this happening, since if some population has poor individuals the solution could stll be

found at another.

‘The two objective functions used in this thesis are: grouping cfficacy (GLEC) and

Travelling salesman problem formulation (I'SP) ace compared as follows:

Similarities between TSP and GEC:

1. Because they explicitly assigns machines and parts to cclls, no aeriguity exists m
determining the cell to which bottlencck machines are assigned. |

2. The solutions forced the clusters to form along the diagonal block, simultaneously
grouping parts and machines.

Differences between TSP and GEC:

1. Each objective function has its own unique representation. The GLC uses float
representation, which allows the user to incorporate or selectively remove constraints
on the number of cell, but this representation makes the GA more susceptible to
local minima. While ‘TSP uses permutation representation, which enables the GA to
escape from local minima, but does notincorporate constraints on the number of

cells. In addition each has its objective and gives different configuration.
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2. Many genetic operators were developed to improve the performance of the GA, that
take advantage of the special structure of the cellular manufacturing formation
problem. Each objective function has its own crossover and mutation techniques: the
grouping efficacy uses one crossover technique, which is the simple crossover and
two mutation techniques, which are uniform and boundary mutation. On the other
hand, the TSP uses three crossover techniques: single point, partially mapped, and
order based crossover and five mutation techniques: swap, three-swap, shift,

inversion and insertion mutation.

5.3 Recommendations for Further Extensions

The manufacturing cell formation problem is studies in this thesis. Research in this area

is still developing and a number of potentially valuable enhancements to this work

should include:

1. The application of mult-objectives evaluation function by considenng the MCEP as
multi-criteria decision-making problem. Objectives such as the minimization of costs
of space usage, part subcontracting, machine loading and operation costs, or the
minimization of the amount of part dissimilarities and machine duplications can be
formulated to solve the MCFP. Most researchers when dealing with cell formation
they assume an infinite loading capacity, but from practical point of view it 1s
important to incorporate machine loading into the model. Also, to achieve higher
level of production flexibility, it becomes necessary to consider alternative process
plans for each part.

2. The addition of constraints that place upper bounds on cell size r.e. , the number of
machines in each cell needs to be limited. Thus, a minimum and a maximum number
of machines that allowed in cach cell is pre-specified. This aims to simplify
management control and material coordination.
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3, Since GA is a randomized algorithm, the performance of GA during a single trial in
the metalevel cxperimenté represents a sample from a distribution of performances.
Therefore, it is recommended that the GA showing the best solution should be
subjected to more extensive testing,

4. In this thesis the number of chromosomes which are going to be crossed over or
mutated are partitioned equally between crossover and mutation combined
techniques. But more better solutions for the MCFP may be obtained by optimizing
the ratios of these chromosomes by the metalevel GA. Also, the development of

improve genetic algorithms techniques (operators) is recommended.
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Description

MATLAB Software



A.1 The Main Program: Graphical User Interface (GUI)
A comprehensive MATLAD functions are built and collected in a unitary software called
“Genetic Algorithm Manufacturing Cell Formation Problem Solver” GAMCFEPS. This

software handle the whole process of grouping the machincs/parts into cells/ families.

The main characteristics of this software are the following:
- Hierarchical structure
- The .ﬂexibility to choose between two solving methodologies:

1. Using the simple GA to solve the MCFP after specifying these parameters:
population size, target standard deviation and mutation and crossover rates.

2. Using metalevel GA where the control parameters (population size, target
standard deviation and mutation and crossover rates) are determined by the first
level GA and used to solve the second level GA, which gives the cell formation
problem solutions.

- Ability to switch between two objective functions (grouping efficacy (GEC) ,and
travelling salesman problem formulation (ISP) ).

- Flexibility to specify the maximum number of cells (k,,) so that, the solved
matrix may be partitioned into a2 number of cells less or equal to this number.

- Hybrid termination strategy (l'arget standard deviation, and maximum number of

generations).

The Hierarchical structure provides the user the ability to modify or re-arrange the whole

system by changing the functions and GUI’s so as to modify the software performance.

'The user can use the simple genetic algonthm to solve the MCEFP by randomly tuning its
parameters. Another new approach s to use metalevel GA where the GA 1s used to do
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the two tasks: 1) optimize the GA parameters 2) solve the MCFP using these optimized
parameters. The metalevel GA is a trial to find the GA parameters that will give the near

optimal solution to all of the problems.

If the user does not want to get better ncar optimal solution, which 1s achieved by using
metalevel GA, and he wants the results soon, the GAMCEPS software gives him the

ability to specify certain GA parameters to see their results.

The main program MCFLm; which stands for main cell formation interface; allows the
user to enter the main menu (see Figure A.1) and perform the following functions (see
appendix B for the different screens).
1- Choose between operating two levels of the metalevel GA or running the simple
GA by setung its parameters.
2- On line help

3- Exit the program

The first level GA pushbutton activates metalevel.m function. This function performs
the first task of the optimization methodology, which aims to produce the optimal

genetic algonthm control parameters.
As mentioned in section 3.5 the control parameters of the first level GA are the standard

GA control parameters specified by De Jong i.e., GAs (population size n, crossover rate

Pc¢, mutation rate Pm), GAs (50, 0.6, 0.001).
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The first level GA goes through several procedures, which are described in the flow

diagram shown in Figure A.Z:r

1. Generation of 50 (population size) chromosomes. Each chromosome is coded as
follows: chromosome 1: GA{n, TSD, Pc, Pm)

2. Tixecute the second level GA: the data set used here is data set number eight. It is
sclected because it has nearly the maximum number of exceptional elements and it
has a large size relative to other data sets. The second level is executed using roulette
wheel reproduction, grouping efficacy objective function, simple crossover, 2
combination of boundary and uniform mutation, elitism replacement strategy and
hybrid termination criteria. The control parameters of the second level are taken
from step one.

3. Evaluation of the first level GA. The first level GA is evaluated by assigning the best
values produced in the second level GA to the fifty chromosome produced in step
one.

4. After evaluating the chromosomes of the first level GA, these chromosomes are
reproduced  using roulette wheel, crossed over using simple crossover technique, and
mutated using uniform mutation. The chromosomes which were (;rossed over and
mutated are reevaluated using the second level GA. Afier that elitism replacement
strategy and hybrid termination are used by the first level GA.

5. When the current number of generations reaches the specificd number of
generations, the GA system is stopped and the output is displayed on a speaal file
which is constructed through the GA run. These results includes of course, the GA

optimized control paramcters.
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Figure A.2 The metalevel GA flow diagram
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The second level GA pushbutton activates SLGALm which stands for second level GA

interface. This GUI allows the user to do the following (sce Figure A.3):

¢ Load the initial matrix by choosing it from a popup menu.

¢ specify the following settings:

1.

Genetic algorithm objective function.

2. Maximum number of cells k__.

3. 'The optimized control parameters.

e Operate the second level GA to solve the cell formation problem.

e Display a plot of the best and average values of solutions variation with the

number of generations.

s Display GAERLm GUI, which stands for GA experimental results interface. This

GUI displays the following:

1.

2.

6.

7.

grouping efficacy

grouping efficiency

TSP results

number of voids

number of exceptional elements
maximurn number of cells

The maximum number of generations

The start simple GA pushbutton activates SMGAILm GUI, which stands for simple

GA interface. This interface is identical to SLGALm except that it allows the user to

specify tuned GA control parameters. So the user can examine the influence of any

combination of the control parameters on the performance of the GA system.
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Figure A.3 The second level GA flow diagram
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Figure A.4 The main functions of the MATLAB software.
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2. Imtialization function (nitializefloat.m): This function generates randomly an 1nitial
populatton  of individual strings for the GEC objective function, whereas,

initializeoga.m for the TSP objective function.

Inputs:
- population size.
- DBounds on the values that are randomly chosen. These bounds are: number of

machines and parts, and the maximum number of permissible cells.

Output:

- The randomly generated inttial population.

3. Selection (reproduction) function (roulette.m): This function evaluates the population
of solutions mitially and after each generation. It uses roulette wheel method to copy
strings according to their fitness value te. strings with a higher value have a higher
probability of contributing one or more offspring in the next generation.

Input:

- the initial or intermediate population of s;lutions that are associated with their fitness
values.

QOutput:

- the survived strings which will inter the mating pool.

4. Crossover functions: Crossover 1s  performed according to the crossover rate
{probabiliy). There are three crossover techniques associated with the TSP objective

function and one with the GEC, sce Figure A4,
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Input:
- two randomly selected parents
Output:

- two crossed over offsprings

5. Mutation functions: mutation is performed according to the mutation rate
(probability) designed by the first level GA. There are five mutation techniques
associated with the TSP objective function and two with the GEC, see Figure A.4.

Input:

- two randomly selected parents

QOutput:

- two mutated offsprings

6. Evaluation function: During each generation chromosomes are evaluated using some

measure of fitness. (tspEvalm for TSP and hGCEval.m for GEC)

Input:
- chromosomes with no value information carried with them.
Output:

- chromosomes with the fitness value attached to them.

7. Termination function (optMaxGen'T'erm.m): 2 hybrid termination critenia, which uses
the target standard deviation in addition to the maximum number of gencrations .

Inputs:

- current generatton number

- maximum number of generanions

104

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



- current standard deviation

- target standard deviation

QOutputs:

- done = 1 if one of the termination criteria is met

- done = 0 1f the none of the termination criteria is met

8. Genetic algorithm function (hgam): it is a high level function which contains the
selection, crossover, mutation and evaluation functions, in addition to the elitism
replacement method.

Input:

- the mitial random population

Outputs:

- the final population and the near optimal solution.

- A trace of the best and average and standard deviation of GA solutions variation

with the number of generations.

9. Second level GA solver (SGA.m): This is the highest level of all the 2™ level GA. It
contains all the previously described functions.

Input:

- the mmitial data set matﬁx

Output:

- the solution matrix of the data set.
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Metalevel Genetic Algorithm
Solutions for the

Ten Data Sets
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The original incidence

matrix for the 6 x 10 King (1980a)

Table C.la:

data set number 1.

problem,
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Table C.1b: The solution matrix for the 6 x 10 King

data set 1.

problem,

I'=72.4,

CI=68.6
Parts

n=86.3,
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The criginal incidence matrix for

Table C.3a:

data

{(1991) problen,

the 9 x 9 Chu and Hayya

set number 3.

Parts

SAUTYDBN

The scolution matrix for the 9 x 9 Chu

Table C.3b:

data set number 3.

(L9921} problem,
=74.3,

and Hayya

CI=70.4

n=895.1,
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The original incidence matrix

for the 10 x 8 King

Table C.4a:

data

(1980L) problem,

set number 4.

1sooe@ sisayl Jo Blue) - ueplor Jo AJISiBAIUN JOo AkelqiT - paABSaY SIYDIY |1V

Parts

SBUTYDER

10

Table C.4bh: The soluticon matrix for the 10 x 8

data set number 4.

(1980b) problem,

King

CI=81.9
Parts

n=92.5,

I'=82.2,

SOUTYDRK
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Table C.6a: The original incidence matrix

for 15 x 10 simple Chan and Milner

problem (1982}, data set number 6.

1Isote@ Sisay L JO e - ueplor Jo AYIseAIUN JO Aleld!T - paARSSY SIYDIY ||V

Parts

10

10
11

S2UTYIRH

12 -
13
14
15

Table C.6b: Metalevel GA solution for the 15 x10
Simple Chan and Milner problem (13882}, data set

_number 6&.

92.0, n=96.0, CI=92.8

=

Parts

13

10
12
15
11

SBUTYDTH
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The original incidence matrix

for the 15 x 10 Complex Chan and Milner

problem {1982), data set number 7.

Table C.7a:

1so0e@ SS9yl Jo BIue) - ueplor Jo AlsiBAIUN JOo AkeiqiT - PaAISSaY SIYDIY |1V

Parts
5 6 7

9 10

8

o ¢ 1 1

0

o0 0
1 1
o 1
0 O
o 0
0 O

c 0
1
0
0
0
0

1
0
0
1
1
1

10
11

o oo

SBUTYIER

12
13
14

15

Table €.7b:; Metalevel GA solution for the 15 x10

Complex Chan and Milner problem ({1982), data set

number 7.

=86.1

94.5, CI

r=85.4, 4

Parts

14

15
13
10

SHUTYDBH
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11
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dence matrix for 14 x 24 King (1980) problem, data set

inci

Table C.%a: The original

number 9.
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data set 9.

(1980b)problem,

Table C.% the first sclution matrix for the 14 x 24 King

CI=61.2

n=81.3,

I'=61.4,
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{1980b)problem, data set 9,

for the 14 x 24 King

Table C.9c the second solution matrix

CI=62.4

81.4,

r=6:1.8, m
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Ige problem (1960), data set number 10.

N

for 20 x 35 Buch

ml incidence matrix

g

10a: The o

Table €
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Ige problem (1960), data set number 10.

i©
1=755

Burb

5
75.8 =881 (

for the 20 x 3

r

hon
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: Metalevel G
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